The Pyrrho Book

Malcolm Crowe, University of the West of Scotland

www.pyrrhodb.com

ISBN: 978-903978-50-4

© 2015Universityof the West of Scotland

PaisleyUniversty of theWest of Scotland2015

The Pyrrho BookMay 2015)

Contents
Chapter 1: Introduction t0 the BOOK.............uuuiiiiiiiiiiiiieeeiiiiii e 4
3 I T 11 o = o I Y 4 o o TP 8
1.2 The PYrrN0 DBMS SEIVEL......uuiiiiiii e eeeeei e eeeeeeenne e e e e e eeee e 9.
1.3 Starting the SEIVEE......ccc et e e e emenrnnend 9
1.4 Database fil@S........ccoiiiiiiie e 10
1.5 The Client ProgramiS........cooviiiiiiiiiiiiiemme e emr e s e e e e e e e e e e e anens 10
1.6 ChecCKiNg It WOIKS ... ccci i ceeeeeeeeee et emrees 10
THEe SQL> PrOML. ...ttt eeerr et e e e e e e e e e e e e e e e s nmmn s 11
Chapter 2 Ddaa Consistency, Transparency and Durability.................ccooeiiiiiinnnn e 14
2.1 DUIADIIITY. ...t e e 15
2.2 TIANSPAIENCYceeeeeeretiitiiies s imeeesseeee s a e e e e e e e e e anen s e e s e e e e e e e e eaeeeeeessannneeeeeeeees 16
2.3 CONSISTACY....ceiiiieeeeei e eeee et e e e bbbt e e e et e e e aeer e e e e e e e 16
P I = 1 1SVt 1 0] 3 USSP 16
2.5 Application programming interfaces: ADO.NET...........oiiiiiiieemiiie 17
2.6 ATIrSt DENCHMArK........ooieeeee e eeee s 18
2.7 Pyrrhoos .i.nt.er.nal..s.t.r.uct.url.e........ 19

Key features of.. . Ry.r.r.hods..de.s.i.g.n......21

Chapter 3: Database DESIQN........ccoooiiiiiiiiiieceee e e e eeeeeeeean 24
I A O 153 1 = 1 £ RPN 24
EXample 1 dBRDASE.ooeeiiiiie e 24
3.2 Pyrrhodos | og.s..and..s.y.s.t.em..t.a.hb.l.es.25
Example 2 C# appliCation............ooooeoiiiiiiiieeee e 26

3.4 The JaVva LIDrary........ccoiiiii e 28
3.5 SWEPIOIOQ. ...ttt 29
K G T I N 2R 30
3.7 DOCUMEBNTS ...ttt e ettt ettt e e e e et e e b e e e e e emnmeeeeenn e eeas 31
FIrst StEPS iN PYITNO.....coo oo 32

3.8 Pyrrho DBMS low level design.............oooiiiiiiini e 32
o =T TSP T RPN 33
LI 11T 34
SIOtENUMErAtOr<K V2. o e 34
ATIEEKK N> SUDCIASSES....ccuiiiiiiiee ettt s eemmt e e e e e eeeas 35

1 =0 T PSPPSR 35
19T o | = | SPPRRR 36

(O T (o1 (=T gl D - | - TP UUURR 36

The Pyrrho BookMay 2015)

DOCUMEBNLES. ...ttt ettt mmmr e e et e e et e e e ea s ameneeenn e e eeaas 36

Yo D= L= W Y/ 0 L= RSP 37
Chapter 4: Database SEIVEIS.........uuuuiuuiiiiie et e e e e e e e e enees s s e e e e e e e e aeeeeeeeennees 39
4.1 SErVErS and SEIVICEScceeieiieieiiiseiiimnne e e e e e e e s bbb bbb e b s eneessebbbbbbbseeeseeeeeeeeessenns 39

4.2 TCP/IP SEIVICES....cuuiiiiiiiiiiiiiiie ettt et rmmme e e e b b ne e 39

4.3 The application ProtoCOL........cccoueeiiiie e 40

4.4 The CIENt lIDFAIY....cccci i e e e ennnranan 40

A5 SBSSIONS ..eitttiiiiiiie e ettt e ———— bbb nnn bbb bbb r e 40

4.6 Database CONCUITEINCY. ...uuiiieeeeeeeeeeeietieeeseeeeeeeeeeeeeeeeeassasssmmmreeeeeeeessnnnnnn s 41

4.7 Databases and the file SyStem..........cccceeiiiiiiiicccciciii e eeeeeervreeieseee e A

4.8 Alternative arChitECIUIES.........ooiiiiiiiiiiiiirees e enees bbb ereeeaaaaeesd 42
Chapter 5 Locking vs OptimistiC TranSactioNS...........coouviiiiiiiiiemme e 43
5.1 A scenario of transaction CONflICT............coooiiiiiiiiiccc e 43

5.2 Transactions and Locking Protocals...........ccccevviiiicecvciiiiciiiieeeeeeeeeeeevveeeen 44

5.3 SNAPShOt ISOIALION........coeeiieeee e e e e e e e e aeeen 45

5.4 TraNSACHON MASTEIS.....ciii it iii it ienee s et eeneesssbbbb b b seeeeeeeeaeeeesseans 46

5.5 ADO.NET and tranSactiONS..........cceeieiiiiiiiiiimee e e e e e e s eees e a7

5.6 VEISIONING......eeeiiiiieiiiiiiie e s s ceeetaaaa s s e e e e e e e e e e e e s amaesassaaaaeeaeeeeaaeeessesssnnneeeaaeaeeeeeesd 47

5.7 Transaction Profiling..........ccooiiiiiiiiiiieeee e 48

5.8 Profiling implementation...............ouuuiiiiiireeec e e e e e e 49

5.9 PyrrhoDBMS: safe optimistic transactiQnS.............ccoovvvivieeeriee e 50
Transaction CONTIICES.......uuuueiiii e e 51

ENLLY INTEOIITY. .ttt ne e 51
Referential INtegrity.........ooer i e e 52
Chapter 6: ROIE BASEA SECUNLY.........ccvviiiiiiiiiii i et e e erens e e e e e e e e eaaes 53
EXAMIPIE e 53

6.1 Application or DBMS based SECUILY........cccuiiiiiiiiiiiiieeeeeeeee e 54

6.2 Forensic investigation of a database..............ccccvviieeniiiii 54

6.3 PrIVIIEOES. ...t e e e e e 57

G 0] [U 57

6.7 The r0le STACKccoiiiieeee e e e e e e e e e enner e 57

6.8 ReVOKING PriVIIEGES.ot e e 58

6.9 Verifying PriVIIEgES.cooiiiii it eeer e e e e e e e 58
Chapter 7: Role-based modelling and legacy data..........ccccccoeeevvvviiiiiee e . 60
AN EXAMPIE. ..o et 60

7.1 How the mechaniSm WOIKS.............uueeiiiiis i e e e e e snenn e e e e e e e e e e 65

7.2 LEYACY DALA.uuiiii it 69

7.3 The RESTBEIVICE......cciiiiieeeeeeiiiii ettt e e e e s et s e e e e e e e e e e e e e s annnn s 69

The Pyrrho BookMay 2015)

7.4 Data Visualisation and CSS.........coooiiiiiiiiiiiireeeeeeeiii e 73
Chapter 87 Web semanticS and OWL.........ccuuiiiiiiiiiiiiiiieeeeee e 74
8.1 URIS: fIrSt StEPS ...ttt ieeeiii bttt eemre e e e e e e e e e e e e e e e e s nnmnneee e L B

ST O AT I Y/ 0T PP P TR 75

8.3 IRI references and SUDLYPES........ooooiiiiiiiiiiiee e 76

8.4 Row and table subtypes............oooiiiee e L D

8.5 PrOVENANCE..... et e et e e e arnme e e e e 77

8.6 INteratioRlISALION.ciiiiiieeeiiei et e e e e enne s 77

D= L= I L= S SRRR TR 7
INEEIVAIS. ...t e e e snnn e e e e e e e e L O
Localisation and COIAtIONS..........uuuiiiiiiiiiiiii e 78

8.7 USING SIrUCIUIEd TYPES....cceeeeeiiiiiiiie e et s e e e e e e e e e s eneera s s e e e e e e e e e e e eeeeeannens 79

8.8 Stored Procedures andtfi@as..............cccuueuriiiiiimmeniiiiiiie e 80

8.9 Condition handling StatemMEeNtS.............covvviiiiiiccre e 81
EXAMPIES ... 81
Chapter 9: Distribut ed Databases.............ccuvuuuiiiiiiireeeeeiee e 83
9.1 Distributed tranSaCHIONS.coiii e e e e eeeeeeee e 83

9.2 DynamicC CoNfigUIatioN..........ooiiiiiiiiiiitieees s eeeee e e e e e e e e eeeeeas 84

9.3 Auto-partition algorithm fOr L.......cccciiiiiiiiii e 85

9.4 ConNection ManNAgEMENT.........cuiiiiiiieii e 85

9.5 Database DEPENUENLY........ceeiiiiiiiiitieees st eeeeessbe e ee e e e e e e eeeeeeeeean 86

9.6 COOPEIALING SEIVEIS. .. .oiiii ittt eeea e e s enenss b b bbb b s e e e e e e e e e eeeeeeeenns 87

9.7 Transaction iIMPIEMENTALION.............uuuiiiiiiiii et 87
Chapter 10: Partitioned Databases..........cccooeeieeiiiiiiiieeeic e 89
10.1 Multiple database CONNECHIONS.cooiiuuiiiiieeee e eeeeee e 89
10.2 Partitioning a database.............ccuuuviiiiiieee e 90
10.3 Database Partitioning............eeeiiiiiiiiiieeeeieeeee e 91
10.4 Partition SEOUEBNCEScctiiiiiiiieee et eeee e e s 92
10.5Managing PartitiONS.........coooiiiiiiiiieeee e eee bbb e 92
RETEIENCES. ... et s 93
Appendix 1: Using ADO.NET for various databases...........cccccoevveiieiiiiceciciiiii e 95
ALL IMYSQL ittt ettt ettt ettt e e e e e e e e e e e e e e st e e e e e e e e e e e e e e e e e a e nnne e 95
Al.2 Using SQL Server Compact EAItlON...........cooeieiiiiiiiie e eevmeeeand 98
A1.3 Using SqlServerCe with basic ADO.NET..........cccooiiiiiiiiiieeiiie e 99
AL.4 USINg SQL SerVer EXPreSS....cccuuiiiiiiieiieiii e e e e e eeetiis e e e e e eassmmmsesn e aeaene 101
AL5 USING PYITNODB....... e eemr e e e aannas 102
AL1.6 Using Java With PYIrhQ...........coooiiiiiiiiieeen e eeeee e 105

The Pyrrho BookMay 2015)

AL.7 Using PHP With PYrrhQ........oooiiieee e 106
Appendix 2: The Transactions MYSEry tOUN.........ceeeeeieeeeeeeiiiicieeeie e eeeeeeeeaees 107
AppendixX 3: ROIES aNd SECUILY........coiiiiiiiiiiiiieiit et 119

A3.1: The SPorting ClUD......ccooe e 119

A3.2: A TOrensiC INVESHIGALION............ooevieiiiiiimme e 120

A3.3: Some more PYrrhoDB Stuff...........euiiiiiiiiii e, 120
Appendix 4: The Distributed Database Tutorial for Windows..............ccceevvvviiiiiieee... 122

AL Start UP the SEIVEIS......uueeiiiii et eeees e e e e e e e e e e e e e eeeeanannnne 122

A4.2 Create a sample database.............cooovviieeei e 123

A4.3 Configure a storage replica of the sample database............cccccooeeeeeeeee 125

A4.4 Examining the configuration file...........ccooooiiiiiiiicccci e 126

A4.5 What happened in STER.3.......ooiiiiiieeeiiieemr e 127

A4.6 A distributed transaction begins............ccovvviviiieee 134

A4.7 What happened iN STEP.6.........ooviiieiiiiii e 143

A4.8 Creating the query service for D ON.C............uviuiiiiiiiiieecee e 144

A4.9 What happened iN STEP. 7. . ..uueiei i eeeeeee e eeeeeeeeene e e e e e eaaaeaes 151
Appendix 5: Partitioned Database Tutorial............cccceeiiiiiiiiiiiieeeiiiieeeee e 159

ABS.1 Start (0 the SEIVELS.......uuueiiiii et eeeer e e e e e e e e e e e e eeanananee 159

A5.2. Create a sample database OnA..............ooviiiiiicccri e 160

AB5.3 Partition the table.............uuiiiiiiiiiii e 162

A5.4 Examine the database and partitiQn...........cccoooeeeiieeeciiiiiiiii e, 163

A5.5 From A insert some more records in.E...........oooooiiiiiiiicce e 165

A5.6 On A, delete the partition............ccooeeiiiiiiiieeere e 168

AL.7 Step3 in det@ll.......ccooiiiiiiee e anan 169

AS5.8 Step 4 iNdetail..........oooeiiiiiiiiiie e 171

AS5.9 Step SN detail..........oooiiiiiiiiii e 180
AppendixX 6: PYrrNo SQL SYNTAXuuuuuuiiiiiisie e ceeeissse s e e e e e e e eeeeeameen s s e e eeeeeeaeeeees 181

AB.L STALEIMENLS.... ..ottt e et e e et b mmmr e e e e e e era e e e e e esmmmeeennan s 181

AB.2 Data DefiNition...........oooiiiiiiiiiteees s ereee e e e e e e e e e e 182

AB.3 ACCESS CONIIOL....cciiiiiiiiiiieitit e e et eenees bbbt r e e e e e aeaeeeeseemeees 187

G R 1Y/ o 1 188

AB.5 Data Manipulation.............uuuiiiiiiiiiii e mmmr e e e e ear e e eaenee 189

AB.B VAIUE.......ccoiiiiiii et eeee e e e e e e e et e e e e et e et bnnne e e e e e eeeeeeneee 191

AB.7 BOOIEAN EXPIreSSIONS.....covvuiiiieiiiiiiii s ceeeie e e e e ettt e e e e e eeata s s e e e e eesaaneeeaaene 193

AB.8 SOQL FUNCHONS.....ouuiiii it eeeme e e e e e e e e e e e rama s 194

AB.9 STALEIMENLS.... ..ttt e et e et mmmr et e e e e e eran e e e e e e s mmmeeernnnns 196

The Pyrrho BookMay 2015)

AB. 10 XML SUPPOIT. ...ttt eeee et e ettt emre e e e e e e b e e e e e e ennsmeans 198
Appendi x 7 Pyrrhad.s..c.ondi.t..a.n..c.o.d.e.s....200

Appendi x 8: Pyrr.hobs..Sy.st.em.Tab.l.es.....204

Appendix 9: The Pyrrho Class Library Reference............cccccoviiiiiiiieeniiiiiiiiiiiiieeeen, 206
AD.1 DAtabASEEITA........eeiiiiieiee e —————— 207
AD.2 DAL ... e e e ettt b — e e e e eaaa s 207
AD.3 PYITNOAITAY.....cciiieeeeeeet ettt errer s e e e e e e e e e e e e e e e enanseeeeas 207
N B Y 41 (21 @] (1] o] o PP 207
A9.5 PYrrhOCOMMAND........oeiiiiiiiiiiie et ernee s e e e e e e e e e e e e e eeeeeanees 207
A9D.6 PYITNOCONNECT.......coiiiiieeieieeii et e e e e e e e e anenn s 208
A9.7 PYITNODOCUMENL......cce ittt eeee et r e e e e e e e e e eeens 209
A9.8 PYITNOINIEIVAL ...t e 209
A9.9 PYITNOREATEL........uuiiiiiiiiiiiiiii et 209
A9.10 PYITNOROW. ..ottt e e e eeeee e 210
A9.11 PYIThOTabIe. ...ttt e e eeee e 210
A9.12 PYrrhOTranSACHQAN.uuuiiiiiiiiiiiii ettt e e e e 210

Appendi x 10: Pyrr had.s..Connec.t.i.on..St.r.ikilg

INAEX TO SYNTAX ...ttt mee e eee s 213

The Pyrrho BookMay 2015)

/| KI LILS/NINBYR dzO0 2y G2 UKS . 2271

This bookKocusesona number ofaspects oflatabase management systems that are ortant in real

life application, butin which current productdall short of what is required.The book will make a
contribution to DBMS design by suggesting a numbefuoflamental improvements to DBMS
architecture, and validating them by means of a working piafedoncept DBMS, Pyrrho, that includes
not just the basic relational model, but most of the features of-$&Mddard SQL and some other
suggestions from the dabmse community. We will discuss the tradffs in speed and complexity
involved in including these features: over the years the set of additional features offered by Pyrrho
has changed, with some advanced features (RDF, SPARQL, JRa&idelidata model®tc) being
removed from Pyrrho where the added complexities have not justified themselves.

In this book supporting data consistency is a prime concern. In particular it should not be the

FLILX AOF A2y Qa NBALRYAAOATL A (alter édrs. Yre DBV&louldyhav® 2 v & A &
the task of ensuring that data is consistent and constraints as defined in the schema are maintained.

While databases should be fast and scalable, 100% accuracy is more important than speed.
Alternatives to the relationamodel are included in this book where relevant: it is a misconception

that the failings of database products are somehow the fault of the relational model or SQL.

This book will take for granted the concerns of introductory texts, such as the relatiesigin SQL,
entity-relationship modelling, joins and trigge®ne of these concerng,y’ 2 N | £ fishotableé R (I =
here in that it contributes to database correctness, siaog duplication of datahas apotential for
inconsistency It represents an efficiency trae#f since with normal form, thénformation for the
domainneeds to be reconstructed bpcombining data fronthese extra tablesr selet¢ing columns

from larger tables; and where normalisation is reversed for efficieBegons, it is at the cost of

repairing duplicates, for example with the help of triggérbese considerations are of interest, but

they comebefore the starting point for this book: we assume dodatabase design. Our concerns

beginwith such issug astransaction norsolation the suspending of constraintsr inadequate

transactioral guarantees

In fact, he most serious criticism of existing commercial products relateAQtD properties and
implementation of transactionswheren many cases they2dy faliow their own documentation
Whenthis book is used in a university course | would strongly recommend including the Transactions
tutorial from DBTechNET.org which provides a useful critique of a range of commercial DBMS from
this viewpoint, and suplies a set of interesting exercises to try out on any other supposedly- ACID
compliant DBMSBuUt rather than merely criticise #se products, this bookffers a set of design
proposals for solving the problems of consistency, embodied in the -sparce Pyrho DBMS. In

order to show the practicality of these design proposals for advanced database scenarios, this book
3284 0S@2yR AAYLIX ATASR SEFYLX S& (2 aK260FaS t &NN
databases, and strongly typed features trelard SQL.

There are some puctical sessions in appendicesosfiof theseuse Pyrrho as the database engine,

but the first appendix gives a more general introduction to building database applications, using a
number of database productsShorter practial exercises are included in the chapters as the
corresponding topic is presentednfortunately no product sticks rigidly to the standard SQL syntax

is described in 1IS@075. Pyrrho is closer than most but the SQL syntax appendix is really required
reference during practicalessions. A final group of appendices ca@mne technical details on Pyrrho:

the error codes, and system tables.

1 Some of these difficulties are caused by transaction properties mandated by the 1ISO standard for SQL. Non

compliance with the SQL standard in these areas is legitimate from the viewpoint of this book: there are other

aspects of standard SQL that should/@ebe allowed (for example ineffective REVOKE, ON DROP NO ACTION,
GOoNF yOK (NXyalOliA2yasdoo

T

The Pyrrho BookMay 2015)

| expect all readers will have attended at least one course on Databases, but the subject area is quite
complex.Actualbuildingof database applicationsas keen a neglected area in moshiversity
programmesThe first set of practical exercisesAppendix elps to motivate the discussion by
showing some simple approaches to database application development.

M@V gyt 2FR t &NNK?2

All editions of Pyrrho are available fromww.pyrrhodb.orgfor immediate download. Provided

the .NET framework has been installed, it is possible to extract all of the files in the distribution to a
single folder, and start to use Pyrrho in this folder without making any system or registry clfanges.
The distribution contains a user manual called Pyrrho.docx: there is some overlap of material between
Pyrrho.docx and this book, but the focus in this bakn general principles of databases, while the
manual contains more technical details about Pyrrho.

There are several editionsf Pyrrha Professional and Open Source, and the embedded versions of
each.Theyuse the same relational engine, API, AC#dgactions, integrated security and muler
accesdbut have a different database format (*.pfl.*.osp) for security reasdigre are corresponding
client libraries (PyrrhoLink.dll, OSPLink.dll) amibedded editions (EmbeddedPyrrho.dll, OSP.dIl)
wherean application has one or more private databas#ss very important to understand that the
opensource tools cannot be used with the professional server, andwdcsa.

The opensource edition includes some database features omitted from the prafeakiedition for
reasons of security. The opaource client OSPLink.dll supports $#dlog and PHRDtherwise the
client API is compatible between the two editioms.the Open Source Editiotihere is alsaa client
library for JavaOSPJ provides the page org.pyrrhodb.*Thee are alscsome technical explanations
27T t einiBKv@rkKings in a document called Sourcelntro.docx, and there is a catalotjue ©f
classes used itihe server inClasses.xIsx.

You are allowed to view and test the code, ancbrporate it in other software, provided you do not
create a competing product. You can redistribute any of the files available on the Pyrrho website in
their entirety or embed the dlls or any of the source code in an application. Otherwise, like other
editions of Pyrrho, use of this open source edtitiis subject to the endser licenseand any uses
other than those described here requires a license from the University of the West of Scotland.

Database files are generally smaller than those of othealote products. Files do not contain any
indexes or empty space, so an empty database file is less than 1KB. Database files do grow larger if
there are many updates because Pyrrho maintains a full historical record. It is helpful to separate data
comprisirg the historical record from abloc or transient analysis fiéeso Pyrrho has a multiatabase
connection mechanism to facilitate connecting to more than one database at a time

Currently RrrhoSvr.exe is approximately @B, and when running the servaopess starts out with
about 12MB of memory, but requires approximately as much additional memory as the size of the
database fileMemory (RAM) is required only for current data, so if many records in the database
have been deleted, or much of the datakafile consists of updates, the working memory required
will be less than the size of the database file.

Pyrrho is intellectual property of the University of the West of Scotland, United Kingdom. The
associated documentation and source code, where avia)adre copyright of the University of the
West of Scotland. Your use of this intellectual property is governed by a standatasendicense

2However, it is a good idea to have a separate folder for the databases. It is simplest to copy the server
executable to the folder you plan to use. See section 1.2

31t is best to provide exactly one of these four dlls in folders containing client executables. We no longer
recommend installing components in the global assembly cache.

y

http://www.pyrrhodb.org/

The Pyrrho BookMay 2015)

agreement, which permits the uses described above without charges. All other use requires a license
from the Uniersity of the West of Scotland.

MAHK S t @ NNK2 5. a{ &aSNIISNJ

The server PyrrhoSvr.exe is normally placed in the folder that will also contain the database files. The
Professional and Open Source editions of PyrrhoSvr can be started from the command thee, by
user who owns this folder. It is a good idea to run the server in a command window, because
occasionally this window is used for diagnostic output. (If you are using Embedded Pyrrhihenly
database engine is included in the application and so tinees@loes not needo be running.)

Pyrrho provides its client service by default on port 5433, but will find another port if 5433 is already
in use.By default Pyrrho will try to set up a REST service on ports http 8180 and https 8133, using
Windowsauthentication and a MongoD#ke service on port 2701TYou can supply your own server
certificate for transport layer security and/or specify different ports.)

On Windovs 7 systemsand later, if you get Access denied, you can either run Hesver as
administrator, or you can fix the http url reservations. To do this open a command prompt as
administrator and issue the following commands (with your full user name where shown):

netsh http add urlacl http://127.0.0.1:8180/ user= DOMAIN user
netsh http add urlacl https://127.0.0.1:8133/ user= DOMAIN user

If you get other error messages try using different parsing the command line options described
below.

Mdoill Npy3I (GKS &SNIISNJ

The server is normally started from the command line, in the same folddveaseatrver binary: in the
distribution this is in the Pyrrho or OSP folder closest to the root of the distribufiba.command
line syntax is as followor Open Source Pyrrho, the server name is OSP)

PyrrhoSvr [-h: host][Tp:port] [-s:port][-S:port] [-M:port][-d: path]

On Linux systems, you will need the Mono runtime instalkead the command line begimsono
PyrrhoSvr.exe

Thech and¢p arguments are used to set the TCP host name and port number to something other
than 127.0.0.1 and 5433 respealy. This can be a useful and simple security precaution. Note that
the host IP address used must match the host name giveonnection strings. Se&ppendix 10

Thegs andgS flags modify the ports for the REST service from the defaults of 8180 and 8133

I'da

Thecd flagcan be used to speEié 1 KS aSNIBSNN& RIGF61F&aS T2t RSNY 4
and some additional flags in the Appendices on Distributed and Partitioned databases when we model
the use of multiple servers.

The Pyrrho BookMay 2015)

ms FGF ol asS Uf Sa

PyrhoSvr.exe, the folder that contains it, and all the database files in this folder are normally owned

08 GKS alYS dzAaSNE OFfftSR GKS aSNBSNI I O02dzyi Ay
different ¢ as described in this section.

Ifthese@SNJ ONBI GSa | RIFEGlFlorasS o0FAfSO 2y O0SKFEF 2F |
the very first record of the file: this user is then established as the database owner, and by default has

full administrative control over the database.

On the Open Source edition of Pyrrho, database files have extension .osp. For other editions the
extension is .pfl. For example, a database called Sales will be contained in a file Sales.pfl or Sales.osp.
If a database file grows beyond 4GB it will be split s&ctions: after the first one their names will be
Sales.1.pfl, or Sales.l1.osp, etc. (As is suggested by the different extensions, Open Source Pyrrho files
cannot be used by other editions and vice versa.)

You can inspect the database folder from timeitod to check everything is in order. It is not a good
idea to rename a database fjlas that is the name of the default database Role, and Pyrrho will infer
some sort of partitioning if the two do not match.

For embedded applications, the database filefjsould be installed alongside the application (e.g. as
an asset).

MdpKS Of ASyd LINRPINIF Ya

There are two client utilities at present: a traditional commdime interpreter PyrrhoCmd, and a
Windows client called PyrrhoSQL. As with all Pyrrho client®yhdoLink.dll or OSPLink.dll assembly

is also required. We discuss these first. The distribution also contains a REST client and a transaction
profiling utility.

OSPLink.dll (or the Java package org.pyrrhodb.*) is used by any application that wisheshe us
Open Source Pyrrho DBMS, and PyrrhoLink.dll is needed by any application that wishes to use the
Professional edition of the Pyrrho DBMS. These client libraries have similar functiortaktyibrary
includes support for client applications. The plast possible approach is simply to place
PyrrhoLink.dll (or OSPLink.dll) in the same folder as the application that is using it.

PyrrhoCmd is a console application for simple interaction with the Pyrrho server. Basically it allows

SQL statements to besued at the command prompt and displays the results of SELECT statements

in a simple formFor most purposes it is best to place the command line utilities such as PyrrhoCmd

and the client dll in a different location from the server. They occupy vely tisk space: and the
RFEGlolrasSa gAff 0SS ONBIFIGSR Ay (0KS aSNBSNRa ¥2f RSN
With embedded databases things are different: Databases will be in the sades s applications

using arembedded edition of Pyrrho.

MBcKSO1TAY3I AG 62NJ a

For simplicity, a the sane machine as the server, open a command window and use cd to navigate
to the same folder as the client executable sure to use the correct version of PyrrhoCmd: you
cannot use the professional version of PyrrhoCmd with the egmmce server or vice v&a. (It is not
usually a good idea to start up PyrrhoCmd or the server by dealiglkeing because the command line
parameters can be usefil

PyrrhoCmd
SQL> table" Log$"

The Pyrrho BookMay 2015)

In SQL201fable id is the same aselect * from id for base tables and system tables.

Your output will differ in a number of respects from this, (gaur folder will probably not be EDSP)
and someexplanations are imortant here as we can see theifdows identity of the user that started
PyrrhoCmdr{ot the server).

Normally, the PyrrhoCmdommand linewill have a argumentparameter indicating the database(s)

to connect to. If none is given, PyrrhoCmd will open (or create) a database called Yempan
confirm this by looking in tha S NJidkdsidyéu will see a file called Temp.pfl or Temp.osp (it was
not there before) Pyrrho creates a default Role for the database with the same name as the database,
and records the identity of the creator user (this will be your login ID). All later entriés ilog file

will have transaction information.

You can use contrel, or close the window, to exit from PyrrhoCnild.you want to delete the
database file that you have just created, you will need to stop the server.)

When starting up PyrrhoCmd, the fmNing command line arguments are supported:

database ... One or more database names on the server. The default is Tlem
not include the .osp or .pfl file extension.

- h: hostname Contact a server on another machine. The default is localhost
- p: nnnn Contact the server listening on this port number. The default is £
-S Silent: suppress warnings about uploads and downloads

- e: command Use the given command instead of taking console input. (Ther
SQL> prompt is not used.)

-f. file Take SQL statemes from the given file instead of from the conso
-b No downloads of Blobs
-? Show this information and exit.

Pyrrho can support locales other than English, but such localisations are not currently included in the
distribution. Whether the command prompt (console) window is able to display the localised output

oAt RSLISYR 2y &aeaidsSy Ayadlrttlraarzy RSOGFAfA GKI(
effective with Windows Forms or Web Forms applications.

PyrrhoCmd is normally used interactively. At the SQL> prompt you can give a single SQL statement.
There is no need to add a semicolon at the end. There is no maximum line length either, so if the
O2YYlFYyR 6NI LA |NRdzyR Ay t &@8NNK2/ YRQa ¢oAYyR2g (KAA

The Pyrrho BookMay 2015)

SQL> set role ranking

Unless you use multiline command as described bel@wdreful not to use the return key in the
middle of an SQL statement as the end of line is interpreted by PyrrhoCmd as EOF for the SQL
statement.

At the SQL command prompt, insteatigiving an SQL statement, you can specify a command file
using @ilename.Command files are ordinary text files containing an SQL statement on each line.

If wraparound annoys you, then you can enclose minlé SQL statements in []. [and] must then
enclose the input, i.e. be the first and last rblank characters in the input.

SQL> [create table directors (id int primary key,

> surname char,

> firsthame char, pic blob)]

Note that continuation lines are prompted for with > . It is okay to ereclbsneline statementin[].

Note that Pyrrho creates variable length data fields if the length information is missing, as here. This
seems strange at first: a field defined as CHAR is actually a string.

Binary data is actually stored inside the datsédable, and in SQL such data is inserted using hex
encoding. But PyrrhoCmd supports a special syntax that uses a filename as a value:

SQL> [insert into directors (id, surname, firsthame) values (1,
'Spielberg’, 'Steven', ~spielberg.gif)]

The above exaple shows how PyrrhoCmd allows the syntssource as an alternative to the
SQL2011 binary large object syntax 4 7 4 9 4 .@Pg¢rrhoCmd searches for the file in the current
folder, and embeds the data into the SQL statement before the statement is sent gzither.

As this behaviour may not be what users expect, the first time Pyrrho uploads or downloads a blob, a
message is written to the console, e.qg.:

Note: the contents of source is being copied as a blob to the server

source can be enclosed in single double quotes, and may be a URL, ksource can be
~"http:// something " . Another use of file, for importing datafrom spreadsheets, is described
in appendix 3 (section A3.3).

Data is retrieved from the database using TABLE or SELECT statements, asl aiohoat

If data returned from the server includes blobs, by default PyrrhoCmd puts theseliendsidefiles

with new names of fornBlob nn .

.f20a NBIUNARSQOSR (G2 (GKS OfASyd &aARS o0& UGKAA YSGK
usuallydifferent from the database folder). To view them it is usually necessary to change the file

extension, e.g. to Blobl.giHowever, on the server side, such data is actually stored permanently
inside database files.

Transactions in Pyrrho are mandatory,daare always serializable. By default, each command is
committed immediately unless an error occurs. Alternatively, you can start an explicit transaction at
the SQL> prompt:

SQL> begin transaction

Then the command line prompt changes to SI@Lto remind ya that a transaction isn progress.
This will conhue until you issue mllback orcommit command at the SQL> prompt. If an error

M H

The Pyrrho BookMay 2015)

is reported by the database engine during an explicit transaction, you will get an additional message
saying that the trasaction has been rolled back.

Note that this reminder and warning behaviour is generated in the command line client on the basis

2F ylI O0gS GSEG YIFGOKAY3 62F a0S3IAy (NI yal OlAazyé ¢
these feedback mechanism$he database engine however is not confused. Serious transactions

should use the API instead of the command line.

The Pyrrho BookMay 2015)

| KFELIBENIH/ 2yaraasSyoOoes ¢NFYyaLl NBy O

When people speak of databasesnsistency, transparency and durabiléye three of the main
properties they ought to expectBut in database software it has very strangely become normal to
support inconsistency, and undermine the efforts of software engineers to provide reliable systems,
in a mistaken pursuit of speed at all costssInot clever to base any decisions on incorrect data, so
getting a wrong answer before your competitors is no real advantage. In this book we assume that
inconsistency islwaysbad: since every database starts out in a consistent state it is the juteof
DBMSo prevent inconsistencies from creeping in.

Companies almost always store the data for their business processes (customers, employees, accounts
etc) in databases. Interestingly, the data in company databases often is retained for decades, long
after the computer systems used to create then have ceased to exist. Legacy data still needs to be
accessed.

lf 0 K2dAK O2YLIMziSNI 6221a 2F0Sy NBFSNI G2 aiKS O2 NL
just one. But any of these corporate databasas be accessed by numerous other computers and
programs in the company or its various branches or customers; and database management systems

need to be able to cope with many concurrent connections to the database. Such database systems

are said to be seer-based (clienserver database systems): a program that needs to access the data

in the database opens a connection to the server, and uses a standard protocol to send and receive

the data it wants. One of the main topics in this course will be the wiagsthe DBMS ensures
consistency and integrity in a busy database system, and is agtdeab pesble.

Some computer programs use local databases: that is, there are no other programs that need to access
the data while it is in use. Such databasetays are often called embedded. For example, many
devices today (phones, cars, fridges etc) have computer systems that use local databases. With HTML5
we have ways for web pages to have local data.

Many important pieces of information in a company are stutred in databases, however. It is fairly

rare for spreadsheets, web pages or office documents to be stored in the database. Instead these are
stored in the file system as ordinary files. Strangely, although such individual files are commonly
securityprotected in company computer systems and shared explicitly among user groups, most
companies still apply security in an-atknothing way the entire database, and not to the separate
types of data inside it, despite the availability of security faciliiaghé database management system.

This is yet another aspect we will look at in this module, as it would seem that the security facilities
FNE y20 OdZNNByGfteée dzaSR 0SOlFdzaS KSe& R2y Qi ljdzA G S
The database data files are accessed lgy database server, so they normally belong to the user
account that starts up the database server (often this is a special anonymous account). The database
server controls who can connect to the database.

The Pyrrhalatabase management system is named after an ancient Greek philosopher, Pyrrho of Elis
(360-272BC), who founded the school of Scepticism. We know of this school from writers such as
Diogenes Laertius and Sextus Empiricus, and several books about Pymrifemjsby Floridi) have
recently appeared.

And their philosophy was called investigatory, from their investigating or seeking the truth on
all sides.

(Diogenes Laertius p 405)

t 8NNK2Q& FLILINRF OK ¢ & (2 adzlJ2 NI dbgyhatiSar Gracddr G A 2y N
utterance.

Accordingly in this database management system, care is taken to preserve any supporting evidence
for data that can be gathered automatically, such as the record of who entered the data, when and (if

M

The Pyrrho BookMay 2015)

possible) why; and to mintain a complete record of subsequent alterations to the data on the same
basis. The fact and circumstances of such data entry and maintenance provide some evidence for the
truthfulness of the data, and, conversely, makes any unusual activity or da&a eagwvestigate. This
additional information is available, normally only to the database owner, via SQL queries through the
use of system tables, as described in Chapter 8.2 of this manual. It is of course possible to use such
automaticallyrecorded da& in databases and applications.

In other ways Pyrrho supports investigation. For example, in SQL2011 renaming of objects requires
copying of its data to a new object, In Pyrrho, by contrast, tables and other database objects can be
renamed, so that the Btory of their data can be preserved. From version 4.5, object naming is role
based (see section 3.6).

The logo on the frontover of thisboold2 Yo Ay Sa GKS FyOASy(di aDNBS] 1Se@
in architecture, with the initial letters of Pyrrhand suggests security in its interlocking elements.

HdovdzNI O Af A G @

Of the trio of topics mentioned in the chapter headimyyrability looks the easiest: we assume that

we want to keep data in a good form, and our business operations need to be recorded properly. Of
course the resulting values of data (account balances etc) will be modified later on as a result of our
business processgeso that durability means that we should be able to show later that the data had
this value today.

Strangely, very few database systems really haeediirabilityproperty. When values are deleted or
modified there is usually no way to recover the valtieat were therebefore. Some commercial
systems support a transaction log, but there are no mechanisms to require it to be kept, and in practice
such documents are seen as redundant/duplication and deleted as a matter of routine.

As a result, for real dability, database designers need to create special tables (journals, histories etc)
when such records are a legal requirement.

In the Pyrrho DBMS the transaction log is precisely the durable record of the database, and so it cannot
be deleted without deléng the entire databaséThe current state of the data (with its indexes etc)

is in memory. A similar approach has been reported fen@mory columroriented DBMS by Wust

et al (2012). This architecture brings significant advantages: not only do wednaadility of the
transaction record, but two other advantages: (a) committing a transaction involves appending the
transaction record to the end of the file, and (b) the amount of writing to the disk during operation is
reduced (according to benchmark asurements for Pyrrho (Crowe 2005)) biaetor of 70.

This large difference in performance arises because in the traditional database architecture it is not

only the current state of the data that is held on disk, but also all of the indexes and otteer da
structures, and so any change to the database results in changes to many parts of the disk files. In
HnnnIE gKSY te&NNK2Qa RSaAdy gl a FANRG Lzt AAaKSRZ
the large amount of memory that would be needed fomkeeommercial databases. In practice
databases of 20GB are regarded as reasonable. However, standard DBMS generally use fixed size data
fields, while Pyrrho does not, and in 2013, 20GB of memory no longer seems such a large amount.

t @ NNK2 Qa | LesNeher®durabili®y MJmiportant, such as customer records, or financial
transactions, where data might need to be retrieved years later. There are circumstances where
durability may be less important, for example in an enterprise service bus implenentathere the

horizon for durability is measured in minutes rather than years. In ESB systems, such messages would
normally only be captured for permanent storage as part of a special troubleshooting activity.

4 This design decision in Pyrrho is discussed further in section 3.7.

M p

The Pyrrho BookMay 2015)

HAaHENI yaLl NByOe

Transparencyor accountality) means we should be able to discover why and when data changes:
who or what made the change, was it routine or unusual? In this course we will see this is closely tied
to the concept of business roles. What becomes important is not just who madd&mge, but also

what role they were playing (e.tyer 2009,0h and Park 20Q3were they carrying out part of their
day-to-day role of sales clerk or were they doing something else? Some managers may be authorised
to play more than one role, but if theyecarrying out a standard procedure it is reasonable for them

to say what it is (and not just arbitrary, unaccountable, caprice).

A good database design will build in rdlased support for the standard business procedures it
supports, butveryfewdo. ®ad 5. a{ Qa aAyvyLie lfft2¢ lyez2yS 6A0GK
AGZ YR R2y Qi LINPOGARS | YSOKIyAayY G2 GNIXO1 GKS N

In Pyrrho the transaction record includes not only the user identity for a transaction but the role. A
user can only usene role at a time for any given database. Roles should capture and restrict to normal
business operations. If it becomes necessary for intervention to correct some unusual condition, some
administrative role with greater permissions can be used. Audititidnighlight these and they might
usefully indicate a need for process improvement (Moorthy et al, 2011).

H@o2zyaralSyoe

Consistencyneans that the data does not contain any contradictions. In good database design a first

step in this direction is to mimise copied data: if information is repeated in different places it become

hard to ensure consistency when that information changes. Dependent information (e.g. total or
O2dzy i aK2dZ R 06S O2NNBOG ¢KSy Al MkacudlpeS§da SR L
sum or count is recomputed when required, rather than if an old value is stored somewhere.

As mentioned above, in many DBMS, a single transaction results in many changes to data files, many

of which are effectively copies, e.g. a nesw in a table would typically have the new primary key

value stored in several places, bringing a risk of inconsistency. In the next section we explore the link
between transactions and consistency, and examine what this means for constraints.

Another difficult area for consistency is where some data is stored in one database (or one computer)
and some elsewhere (in a file, in another database, or on another computer). In such situations it is
best if responsibility for ensuring consistency desi somewhere, for example, with (one of?) the
DBMS involved, but often there are real difficulties, for example, a transfer from one bank to another.
Recent research has revisited this problem, addressing the impact of service oriented architectures
(e.g.LarsFrank 2011). We return to this sort of problem below.

HaNS yal Os2Yy a

The practical way of ensuring consistency is to use transactions. A transaction consists of a set of
changes to the database that is logically ATOMIC. That is, although thetdomiglore than one step,

the process comprising these steps is indivisible. The classic example is that of a bank transfer.
Although there are two steps (taking a sum of money from one account and placing it in another) the
process of transfer is logicaliydivisible. During the process the total amount of money in the bank

will be wrong. So while the separate steps are proceeding, nobody else should be able to see any of
the changes until the process is complete and the data is consistent. That isartsadtion needs to

be ISOLATED until it is either completed (COMMIT) or abandoned (ROLLBACK).

All practical DBMS allow concurrent access so that several clients can be operating on the database at

the same time. Not all of them will be making changes ®dhtabase, and in any case changes are
fA1Ste G2 FFSOG RAFFSNBYy(G LI NLIa 2F GKS RFEGFOI &S
transactions considers each transaction as a sequence of read and write operations each occurring at

a particubr time. Concurrent transactions are transactions whose operations overlap in time: they are

valid as long as they are serialisable, that is, if the reads and writes could have achieved the same

MC

The Pyrrho BookMay 2015)

results if all of the operations of the transactions had beswved in time so that the transactions do

not overlap. Many DBMS products write changes to disk storage before the transaction commits: in

times past this was needed since some transactions might involve too much data to be held in memory.
Researchers havexamined highelevel disk operations to improve this mechanism, e.g. Ouyang et

Ff 6HAMMO® t @NNK2QA | LIINRFOK Aa (2 | aadzyS YSY2NE
volatile storage until the transaction commits.

In the database literaturéransactions are called ACID (atomic, consistent, isolated and durable). All
DBMSs provide for transactions, but most allow exceptions to the ACID principles. Allowing exceptions
means sacrificing consistency, and in practice many systems then need dduicgr notions of
compensation activities, to undo changes that may have depended on a transaction that has now been
cancellec’. For such compensation activities to be automated, they need to be specified in advance
for each transaction. In the vast majgritof cases, the transaction is not cancelled, and the
compensation action is just discarded. It has been estimated that up to 40% of DBMS activity relates
to preparation of compensation actions that are never needed, and complex cases have been
described hat require whole hierarchies of compensation actions.

Dependent systems should not take any consequential action until the database transaction is
committed: if this rule is followed there should be no need for compensation. There are several
reasons comonly given for not following the rules. One, hinted at above, is that the transaction may
involve third parties and the delays involved in using distributed commit protocols seem excessive.
This amounts to parties proceeding in the absence of agreemedtpaust be seen as a risky step.
Another reason is that most DBMS using locking for transaction control, and so parts of the database
are locked during the distributed transaction protocol, which can be costly. This last point is really
quite hardtounded G Y RY aAYy OS NRoOodzAG a2LIAYAAGAOE GNI yal (
been welldocumented for decades. Pyrrho uses optimistic concurrency control, and minimises this
sort of delay: it also rigorously enforces transaction isolation so thaiinipossible to know anything
about any ongoing transaction.

The difficulties caused by the bad behaviour of pessimistic (locking) transaction management are far
reaching, and have even led to many businesses deciding that they cannot afford transaction
management. Other aspects of RDBMS technology have also been blamed for poor performance, and
there are many vendors offering QL databases, or columnar databases. Many commercial DBMS
prohibit benchmark testing of their products in their licensing aremgnts. Pyrrho positively invites
benchmarking (Crowe 2005), and despite its rigour its performance is comparable with commercial
products.

HPpLILX AOF a2y LINPINFYYAY3I AYISNFI OSay ! 5had

There are numerous APIs for contacting database servers: the dfdestnmon use are ODBC and
W5./® W@ tSNEAAGSYOS KIR I ONAST @23deiz I+ a RA
version of ADO.NET, and versions of ADO.NET are also used for MySQL and Pyrrho.

We will use some ADO.NET sample code in the lab.fdllowing sequence is typical of standard
ADO.NET. The first step uses the database connection string. Every database has its own style of
connection string- for lots of examples see www.connectionstrings.com

G N O2yy T ySd2yy-SIOAWyeS@IANRWaAE

var cmd = conn.CreateCommand();

OYR®/ 2 YY I ydine SELBELECTstrifig

5 Compensatin mechanisms should be supported by the DBMS if required by business logic. But they should

not be introduced merely because the DBMS does not support Web applications or transactions properly.

Pyrrho offers o SNE A 2y OKSO1 Ay 3 | yRo exploke $hdlepefidemebof latdr ventsois (i K 2

LI NI A Odzf F NJ NI yal OtAaz2yas odzi (GKS dzaS Ay GKS € AGSNI G dzn
indicates poor transaction design or support.

MT

The Pyrrho BookMay 2015)

var rdr = cmd.ExecuteReader();
while (rdr.Read())

{

X® kk F00Saa GKS NBGdzZNYySR RIFGF dzaAy3 NRNWAB6Z NRN
}

rdr.Close();

conn.Close();

This coding pattern issed for SQL strings that do SELECT. You can use cmd.ExecuteNonQuery() for
other sorts of SQL commands (update, delete etc).

You can only have one active data reader per connection (you can close one and start another of
course). You can have more than o@ennection but remember that the DBMS will treat the two
connections as completely separate, so that the transaction mechanisms may mean that the two
connections see the same or different data.

For this reason, if we need to traverse data from severakwtigether, we should use SQL joins (this
should save a lot of work anyway). We generally keep connections open for as little time as possible,
as they can consume resources on the server.

PHP starts the same way:

PO2yy I ¢dbnectionDiEedtd T

$com->ConnectionString eonnectionString

$rdr = $conr>ExecutebQLstring

$row = $rdr>Read();

/I Read returns-1 at the end of data, so we continue while $row is not an int:

while(lis_int($row))

IXKkk PNRgwOn6 SGO F2NJ I O0Saa G2 RFEGF NBOdzNYSR
}

$rdr->Close()

Hdc UNBRGO 0SYOKYI NJ

The C benchmark from the Transaction Processing Council (Raab et al, 2001) is a legendary test of
database performance, and models a clerical oreleiry OLTP system. In this benchmark (TPCC) each
new order transaction involvesver 20 rounetrips to the database as the information is built up and
submitted, and transactional processing is required. On supercomputing clusters transaction rates of
30 million per minute are reported. Thomson et al (2012) report on the differentaguhes to
achieving such high transaction rates: other than using expensive hardware these all sacrifice
something important from the above principles.

MYy

The Pyrrho BookMay 2015)

Results for ACID RDMBS in PCs are more modest, witi20800per minute being more normal. In
the pastl have benchmarked Pyrrho ay e _olEm
2000 per minute (On a Dell Iaptop with Setup Mew Order | Order Status | Paymert | StockLevel | Deivery | Delvery Report |

Windows 7). Omy current 8core laptop

and Windows 8, | get just over 1000 pe &ifes L, mifihchmeme ceeses oo e o
minute, but the CPU usage is only 1409| 7% ™ &% fwwereninssis 0 fome 00 om0
the server runs on just one core.

New Order

Supp_ W Item Id Item Name Gty Stock B/G Price Amouns
1 16300 SDJWQ XLIB XQRVQ 87 $ 36.31 5 181.55
€5527 MUCMU IDEOYQ RV

22 § E1.2% § 245.1%

20216 QJB VX UJT GGEBSM

The TPCC benchmark is designied 1w

&4 $ €5.52 5 131.84

5 G

4 [

2z G
1 13 G $ 5915 5 85%.15
H H 1 B3845 HFEIQMXSTLF EKCQESXI L : ;é g z :Z:: : ii;;g
behave badly with concurrency, since th I soss smem LT YSWQESC L 7 18 G £ 5141 538987
. 1 57344 HFEIQMXSTLF EKBSM 3 17 G $25.70 § 77.10
nextorder-number is a bottleneck. Tota 1 wa SEEeEe - N [B
throughput of the benchmark is lowel ' Bog30 MEXUA IFFECI KR VEDS & 95 G § 9115 8 225.20
with 2 terminals because of transactiol ' T e N | e
conflicts, but then increases Slowly @| =xecsion scavus: v Total: § 306065

more terminals are added. | can use th
CPU more byunning multiple concurrent
terminals (with 5 the CPU usage reach
57%).

The TPCC application in the opsource distribution has tabs for the various functional tests of Tpcc,

but for the purposes of database tuning the two most interesting are SetupNemdOrder (pictured).

The Setup page allows you to decide how many warehouses, and contains buttons for creating the
database, its list of products, the districts with their lists of customers, and the warehouses with their
stock. The product descriptiored customer names and addresses are all generated according to
randomising rules in the TPCC specification: parameters such as tax are also randomised according to
the specification. All of this takes around ten minutes on a PC for a single warehotitiee @atabase

is initially 110MB. You can observe the progress of building the database by using a command window:
t @NNK2/ YR ¢LIOOX IyR GKSy G GKS {v[BH LNBYLIWGZ 0l
have been set up in each table. If the serigeshut down and restarted, it takes about a minute for

the database to be read in from disk, so if you start up the TPCC application you may have to wait this
long before the window appears.

Run i Commit Step

The NewOrder page has two useful buttons: Run will run 2000arders and this will take one or

two minutes. The Step button allows you to see how a single order is built up. Each step models an
action of the clerk to select a district, a customer, an item, a quantity, entering them in the white parts
of the screen, ad shows the responses from the database in the yellow parts of the screen.

It is not wise to use a single benchmark for performance tuning. But gimmudes quitdarge data

sets this particular benchmark can be used with a database engine to gatestihat happens to
network traffic {t is ahuge advantage to use fixed size blocks), what is the best size for BTree buckets
(this hardly matters), whether minimising disk reads is worthwhile (5%), what enumeration
optimisation can be done (3% for a gant-key shortcut), will a specific index class for integer keys
work better than a generic one (no), what is the cost of database features such as multiple database
connections (1%), whether only using one kind of integer internally would help (no) etc.

HOT @8 MNAIZS NY F £ & 0 NHzO (0 dzNB

The database file contains (is) the transaction log, and this gets read in its entirety when the database
is loaded following a restart of the database server (cold start). Each database is in a separate file. The
databaseserver operates on many database files on behalf of many clients. A single client application
can operate many databases at once, by opening connections to one or more databases at a time.

The database file beginswithafedre 4 S a YI 3A O OEhafivelSte endof-ie nfarkeR &
that contains an encrypted digest of the database file. This marker is a sort of digital signature placed
there by the Pyrrho DBMS server, intended to ensure that changes to the database are only made by

M ¢

The Pyrrho BookMay 2015)

legitimate, accantable DBMS operations that form part of the transaction record. There are very few
differences between the opesource and professional editions of Pyrrho, but the algorithm for the
digest is one of them. If the digest does not match the contents otitiabase file, Pyrrho refuses to
proceed and reports that the database is corrupt.

The first two records after the fodvyte marker record the owning role and owning user of the
database. All subsequent records in the transaction log record the role serdfar the transaction
together with a universaiime timestamp. All transaction records are immutable, and can be referred

to using their position in the data file, which cannot be changed. The maximum size of the database
file is 0x40000000, but big dafiles are broken into 8GB sections for ease of management.

The data formats used for these transaction records are fully described in the Pyrrho manual: there
are about 40 different types of record for specifying domains, columns, tables, procedurefgrand
setting up and modifying roles and security permissions. Any database object or record can be referred
to by its defining position. The name of an object thus becomes metadata and can be changed or made
role-dependent, so that the same object can bamed differently by different roles.

Most of the records will contain data for the base tables. All of these are binary records that do not
depend on the machine data formats for the platform used apart from the basic concept of octet.
Character data usddnicode UT® encoding. Integers are represented in the data file as sequences
of octets, corresponding roughly to bag86 arithmetic. The maximum integer allowed has 2048 bits.
Numeric data is defined by two such integers, for mantissa and poWw&0 sale. Blobs (binary large
objects) are stored in the data file like any other data as an integer (possibly a very large one) followed
by the blob data as a list of octets. All dates and times use universal time.

This design brings many benefits as brieflgntioned in the above account: platform and locale
independence, the ability to refer to a database object by its defining position. Most importantly this
simple transaction log design of the database gives a natural automatic serialisation of transactions

The data file represents level 1 of the Pyrrho engine. At level 2 (Physical) the design consists of the
transaction log records, and the concept of data type is defined at level 2. Transaction isolation is
handled in the Pyrrho DBMS engine by using inahlgt data structures up to level 3 (database) of the
design. Up to this level, all fields of data structures are (at least logically) constant, so that for example
any change made to a linked list otrBe results in a new head node. When a transacti@mommitted,

the data is serialised to the data file(s), and the new head nodes for the database(s) affected will be
installed in the list of databases connected to the server.

Each ongoing transaction (level 4) uses a separate space of proposed dathjeats, o that the

202S00a&a 0SAY3I RSTAYSR gAUGKAY GKSY KI @S GSYLRNI

are only unique within that ongoing transaction. At the start of transaction copies are made of the
head node of each database in the traosan: effectively this takes a snapshot of the database at the
start of the transaction, and the transaction proceeds on the basis of this starting database state.

Committing a transaction requires serialising the transaction to the data file/transalctiprand the
defining positions of objects are not known until this is done. During serialisation these are relocated
to their actual positions in the data file/transaction log.

The actual process of committing a transaction takes place in 3 stagesgén Istéhe connected
datafiles are checked for records that conflict with the current transaction. If conflicts are found, the
transaction rolls back. In stage 2, the databases are locked, and this check is repeated for even more
recent records, and if ak well, the transaction is serialised to the data file. Finally (stage 3), the data
just serialised is installed in the (level 3) data structures, and the locks are released.

Transactions that merely read data cannot conflict with any other transactids:as if the entire
transaction takes place at the begin time. For transactions that make changes to the database,

NE

The Pyrrho BookMay 2015)

everything read by the transaction must still be valid at the time the transaction is committed, so it is
as if all of the steps of the trsaction take place at the commit time.

From this account we see that even with optimistic concurrency, there is always a short time when
locks are applied, but locking only occurs at the point of committing the transaction. All of the

transaction procesag including constraint checking, triggers etc takes place beforehand and all of the
data required to commit the transaction has been assembled and is ready for serialisation.

Finally, all of the above discussion needs to be understood in connection®&ithilRK 2 Qhireadindzt G A
model. Pyrrho DBMS uses multithreading at the level of connections (level 4): each connection runs

in a different thread. The transaction mechanism described in the last chapter applies within the
O2yySOGA2yQa (RNEIRE AC2FNBIIAKE ABSPSNNRa o6t SPSH
transaction, and synchronising with it when the transaction commits.

In the next chapter we will consider the effects of this approach to transactions and compare with the
practice in eher DBMS.

The disadvantage of the design is that a cold restart of the database server requiezslirg the
entire transaction log: some countervailing measures are (1) using a-tatdbase design since
Pyrrho supports mukidatabase connections, (e technique of partition sequencing discussed in
chapter 1Q

In Chapter 9 we will consider an approach to distributed databases where a server can play any or all
of three roles in relation to a particular database: stga transaction serialisation, and query
processing. Storage is basically the transaction log or a copy (the physical database or PhysBase),
transaction serialisation is when a set of proposed changes are appended to the master copy of the
transaction logand for query processing, the server needs to have the indexes and database objects
(implemented in the logical Database class).

During a transaction, the database connection is to a set of LocalTransactions (or proxies) that are
based on Database snapsboEach has access to the physical layer for fetching data from base tables,
using a subclass of the PhysBase (for example, the VirtBase class) that also contains the new
information that will be added if the transaction commits.

The above consideratiorsad to the following feature set for Pyrrho.

1. Transaction commits correspond ot@one to disk operations: completion of a transaction is
accompanied by a forearite of a database record to the disk. There is-ayte endof-file
markef which is overwritten by each new transaction, but otherwise the physical records once
written are immutable. Deletion of records or database objects is a matter for the logical database,
not the physical database. This makes the database fully auditéderecords for each
transaction can always be recovered along with details about the transaction (the user, the
timestamp, the role of the transaction).

2. Because data is immutable once recorded, the physical position of a record in the data file (its
GREXY3A LRaAGAZ2YE0 Oly 0S dzaSR (G2 ARSyuGATe RIEGI
names can change). Needless to say, the current structure of the database object, or the current
values of a record, may well depend on subsequent data, whichdHteuexamined for relevant
alterations and updates (or even drops and deletes). Pyrrho threads together the physical records
that refer to the same defining position to facilitate backward searching in the database file and
forward searching in the corrpending memory structures.

5 The endof-file marker includes a kind of digital sigare to guard against tampering with the database
contents.

HM

The Pyrrho BookMay 2015)

3. Data structures in the higher levels of the database are frequently built from immutable elements.
For example, if an entry in a list is to be changed, what happens at the data structure level is that
a replacement element for #hlist is constructed and a new list descriptor which accesses the
modified data, while the old list remains accessible from the old list descriptor. In this way creating
a local copy or snapshot of the database (which occurs at the start of every trimmyaminsists
merely to making a new header for accessing the lists of database objects etc. As the local
transaction progresses, this header will point to new headers for these lists (as they are modified).
If the transaction aborts or is rolled back, aflthis data can be simply forgotten, leaving the
database unchanged. With this design total separation of concurrent transactions is achieved, and
local transactions always see consistent states of the database.

4. When a local transaction commits, howeviite database cannot simply be replaced by the local
transaction object, because other transactions may have been committed in the meantime. If any
of these changes conflict with data that this transaction has read (read constraints) or plans to
modify (transaction conflict), then the transaction cannot be committed. If there is no conflict, the
physical records proposed in the local transaction are relocated onto the end of the database.
Thus the defining positions of any new data will be different fromsthcreated in memory for
the local transaction: the entire local transaction structure is therefore forgotten even in the case
of a successful commit. Instead, the database is updated by reading the new records back from
the disk (or disk cache). Thusdihnges are applied twiagonce in the local transaction and then
after transaction commit; but the first can be usefully seen as a validation step, and involves
many operations that do not need to be repeated at the commit stage: evaluation of exqressi
check constraints, execution of stored procedures etc.

5. These approaches to the design have some strange effects. For example, any data structures that
are not transactiorspecific must avoid maintaining pointers to the logical level structures such as
Table, TableColumn, since these may no longer be current for the next transaction. The current
versions must be obtained afresh from the Database data structure, either by name or by defining
position as appropriate.

6. Because of transaction separation, chking for transaction conflicts cannot be done at the level
of the logical database (Level 3). It is done at the physical level (Level 2), with the help of a set of
rules for what constitutes a conflict. Data relating to read constraints needs to be pdgsedto
level 2 in a special data structure since these do not correspond to proposed changes to the
database.

7. Data recorded in the database is intended to be #horalised (e.g. it uses Unicode with explicit
character set and collation sequence infornoati universal time and date formats), and machine
independent (e.g. no buiih limitations as to machine data precision such abiBR Default value
expressions, check constraints, views, stored procedures etc are stored in the database in
SQL2011 souec form and reparsed when required. This has the advantage that changes
consequential on renaming of objects can be supported at the logical database level, where the
edits can be applied to the source forms in memory.

8. The database implementation useslBes throughout (note: Brees arenot binary trees). Lazy
traversal of BIree structures (enumeration) is used throughout the query processing part of the
database. This brings dramatic advantages where search conditions can be propagated down to
the levelof B-Tree traversal.

9. Database values are strongly typed (TypedValues), but during query processing the server works
with SqglValues, which are expressions obtained from the query language. An SglValue can be
evaluated in a Context, to get a TypedValue.sl&nQuery is a context whose RowSet iow of
SglValues (an SglRowith aRowEnumeratowhich modifies the valuesf the row columns as it
moves This matches well with the tegpown approach to parsing and query processing that is
used throughout Level of the code.

The Pyrrho BookMay 2015)

10. The aim of SQL query processing is to bridge the gap between bogoknowledge of
traversable data in tables and joins (e.g. columns in the above sense) addwepanalysis of
value expressions. Analysis of any kind of query goes thrawget of stages: (a) source analysis
to establish where the data is coming from, (b) selects analysis to match up references in value
expressions with the correct columns in the sources, (c) conditions analysis which examines which
search and join condidns can be handled in table enumeration, (d) ordering analysis which looks
not only at the ordering requirements coming from explicit ORDER BY requests from the client but
also at the ordering required during join evaluation and aggregation, and firglfRgwSet
construction, which in many cases can choose the best enumeration method to meet all the above
requirements.

11. As a practical matter it is convenient to allow mugétabase connections. For example this
facilities analysis or modelling of a datakausing temporary tables, without adding such
temporary tables to the business database. However, if a transaction in such a connection causes
changes to more than one database, this causes a permanent linkage recorded in both databases:
and all linked debases must always continue to be available to any server that is using any of
them. While such mulilatabase transactions are supported, they should be avoided if possible.

12. Despite all of these rich possibilities, it remains the case that almost akrserdatabases,
transactions and queries will be performed locally with small amounts of data. Most databases
will also be small enough to fit comfortably into the 4GB or so RAM available today on PCs, and
1TB RAM is now available on blade servers. N&v8rf Saa> t @ NNK2Qa O2y TA I
database tables and their indexes to be partitioned among a set of servers, so that joins and data
selected from them can be constructed on other servéve. return to these ideas in chapters 9
and 10.

The Pyrrho BookMay 2015)

/| KI' LOWINDF 0 &S 5SaArdy

The physical layer of a relational database consists of a set of named base tables, whose columns
contain values drawn from prescribed sets of values (domains). Standard domains include integers,
fixed- and floating point numbers, strisgof various kinds, dates, times etc. At the layer above this the
data in some of these base tables are seen as specifying entities and relations: so that the rows of base
tables are seen to give details of unigue individual objects identified by prineyy (irst normal

form), and with relationships to other entities defined in other tables.

At the level above this we have the business model where these entities and their relationships serve
a business purpose.

As mentioned in the introductionhe rules of Normal Form are intended to make it easier to maintain

the consistency of data in the database as modifications are made to it. For example, if the same
information is contained in several rows of a table, it becomes difficult to change any of these r
consistently, and if we are allowed to update some of the repeated data without updating it all at
once, there is an obvious danger that some data will be left unchanged (update anomaly). Second and
third normal forms ensure at least that such repeatefibrmation is no more than coincidence.

If a row of a table aims to provide too much information, it can happen that at the point of inserting
a new entry we are unable to provide information in all of the cells (insertion anomaly). And if some
information is removed from the database, but is referred to elsewhere, we have a deletion anomaly.
Foreign key relationships can help avoid deletion anomalies.

However, it is not really the job of the database engine to be prescriptive about such matters, merely
to provide the tools that the database designers want. There are certain expectations about the
standard data types that are supported and their interpretation in various cultures: dates can be
represented in different timezones, international characterssahd collation sequences should be
used, national standards for dates, currencies etc. It should be possible for a column to contain values
of a userdefined type (e.g. with subfields) or an array. We will return to some of these aspects in later
sections

oBMYEGNI Ay ia

It should be possible to apply a domain constraint, e.g. to specify that a number should be in a certain
range, or have a default value. It should be possible in addition to specify a constraint for a column, or
an automatic rule to genate the value of a column based on other attributes. Several popular ways
of getting the database to generate a primary key for a new row are available. It should be possible to
specify a constraint for a table, for example that all values of a particalamn are found in the table.

The SQL standard imposes many restrictions on the expressions used to define such constraints, and
these are enforced to a greater or lesser degree by different databases. Pyrrho allows any search
condition to be used as a keonn or table constraint, and allows such constraints to be modified later.
However, it prevents adding a constraint that is not currently satisfied by data in the table, and does
not allow any operation (not even a step in a transaction) that violatescangtraint.

The PyrhoSvr should already be running.

Pyrrho DBMS (c) 2012 Malcolm Crowe and University of the West of Scotland
4.8 <18 February 2813> wvwu.pyrrhodb.com

0T Minimizsing Disk Reads

PyrrhoDBMS protocol on 127.8.8.1:5433

TTP sevrvice started on port 8180
TTPS service started on port 8133

Start up a command window using the command

The Pyrrho BookMay 2015)

PyrrhoCmd Bank

Paste the following text into the PyrrhoCmd window at the SQL> prompt (on Windowsclight
the title bar and seledEdit>Paste):

[create table accounts(accno int primary key,

balan ce numeric(6,2),
custname char,

constraint sufficient_funds check (balance>=0))]
insert into accounts values (101,456.78,'Fred")
insert into accounts values (103,682.91,'Joe")

table accounts

The output should look similar to the following:

FPyrrhoDBWPyrrho >pyrrhocmd Bank
SQL> [create tabhle accountszs{accno int primary key,
> balance numericib.2).

> custname char.

» constraint sufficient_funds check (halance>=HA>>1
SQL> insert into accounts values (181.45%6.78.° Fred'>
RQL> insert into accounts values <183_.682.91,°Joe’)

o QL} tahle a-::c:nunt.,

.456 78

odtHe NBRIKR 2 3 a

YR aeadsSy dGlrof Sa

Examine the logApart from the DOS window wraparound, it looks like this:

SQL>table "Log$"

71 |PTable ACCOUNTS
84 |PDomain INTEGER: INTEGER

134|PDomain CHAR: CHAR
152|PColumn ACCNO for 71(0)[84]

195|PColumn BALANCE for 71(1)[106]
220|PColumn CUSTNAME for 71(2)[134]

106|PDomain NUMERIC%6_2: NUMERIC,P=6,S=2

174|PIndex U(56) on 71(152) PrimaryKey

247|Check SUFFICIENT_FUNDS [71]: (balance>=0)

Pos|Desc |Type |Affects|Transaction|

| | | |
4 |PRole Bank |PRole 0 |

32 |PUser MALCOLM - NB\ Malcolm |PUser 132 |

55 |PTransaction for 9 Role=4 User=32 Time=10/02/2013 16:27:15 |PTransaction|0 |0 |

|PTable |71 |55
PDomain	84	55
PDomain	106	55
PDomain [134	55	
PColumn3 152	55	
PIndex [174	55	
PColumn3 195	55	
[PColumn3	220	55
PCheck 171	55	

284|PTransaction for 1 Role=4 User=32 Time=10/02/2013 16:27: |PTransaction|0 |0 |
300|Record for 71 ([152] 101:INTEGER)([195] 456.78: NUMERIC, P 6,5=2)([220] Fred CHAR)|Record |300 |284 |

334|PTransaction for 1 Role=4 User=32 Time=10/02/2013 16:27:1 |PTransaction|0 |0 |
|

SQL>

350|Record for 71 ([152] 103:INTEGER)([195] 682.914NUMERIC,P—6,S—2)([220] Joe:CHAR) [Record 350 334
|

Pyrrho identifies everything in the database by its defining position Pos. When the database is first
ONBIFIGSR I RSFldzZ & a{OKSYIF¢ NRtS FyR G4KS 2gySNJI |
only records that do nobhave transaction information. Then we see 3 transactions corresponding to

the three SQL commands issued so far. Each transaction records the use, the role and the timestamp.

The last two transactions are the Insert statements (of type Record). Theadinsiiction defines the
accounts table and you can see the steps involved in setting up the three domains and the three

columns.
¢KS a[23b¢

at

6tS Aa 2yS 2F F 3INBIG Ylye aeadsy

database history. There are t&slwhose names begin with Log$ that are a historical record, while the
system tables, beginning with Sys$ or Role$ show the current database objects.

’The idea that all internals of the database engine should be exposed in relational tables is a consequence of

/| 2RRQa omMpypo
tables. See Appendix 8.

HP

LINKYOA LY Sad {AyOS etaldatesesad infsyslenfal OG A 2y

The Pyrrho BookMay 2015)

A particularly useful one is Role$Table:
SQL> table "Role$Table"

— | _______________ [(R,
|Pos|Name

|71 JACCOUNTS|3

| __________
2o I 0 |
| | | | e |

sQL>

This records the current name of table 71 as ACCOUNTS, and shows it currently has 2 rows.

Note that the script we used for creating the table was all in lowase. The SQL standard says that
unquoted identifiers are not cassensitive. If you want cassensitivity or special characters you need

todoublelj dz2 G S GKS ARSYGAFASNE a 6S RAR 6A0GK G[23aPE
There are some notes on this aspect of the design of Pyrrind3d the end of this chapter.
QEFYLX S H /1 FLLXAOlIa2Y
Let us write a simple application that uses this database. This one [MainWindow - O
Windows Forms for simplicity. To create it from scratch, start up Vig| acount Fred
Studio and select New Project>Visual C#>Windows>Rfipkcation. | Acen
Add a Reference to PyrrhoLink.dIl. Payln
() Pay Ou
Add user interface elements as shown (I used a StackPanel insteal ¢ 50578
Grid for the main window and used horizontal and vertical StackPa| source
for the detail of the groups). You can see my solution in theuess | ° 5
for this text.
The beginning of the code for the application shows how it works. N
the declaration of the PyrrhoConnection and the code for creating
opening the connection (highlighted in yellow).

When we need data from the database, we useéQARET incantations,

one example is highlighted in green. The transaction to do the funds transfer is highlighted in grey,

and notice how it is surrounded with an exception handler.
using Pyrrho;

namespace WpfApplication2

{
/Il <summary>
/Il Interaction logic for MainWindow.xaml
/Il </summary>

public partial class MainWindow : Window
{

PyrrhoConnect db= null ;

public MainWindow()

{

InitializeComponent();
db = new PyrrhoConnect ("Files=Bank");
db.Open();

Account2.Visibility = Visibility .Hidden;
class Aclnfo
{

public int id;

public string name;

public Acinfo(int i, string n){id=i;name=n;}

public override string ToString()

{

return name;

}

Acinfo selected= null ,other= null ;

private

{

void Accountl_DropDownOpened(bject sender, EventArgs e)

var cmd = db.CreateCommand();

The Pyrrho BookMay 2015)

accno=" + sub.id;

if (selected != null)
{
var cmd = db.CreateCommand();
cmd.CommandText = "select balance from accounts where accno=" + selected.id;
var rdr = cmd.ExecuteReader();
if (rdr.Read())
Amount.Text = + rdr[0]; w MainWindow - = EM |
rdr.Close();) 5
} Acc?unt‘ oe ‘
else g‘é:?ance
Amount.Text= "0.00" ; r@: anlon
CancelButton.IsEnabled = true ; o Pay Out
T —
From
private void Account2_DropDownOpened(object sender, EventArgs e)) Cash
® Account
if (selected!= null) |Frea .
var cmd = db.CreateCommand();
cmd.CommandText = “select accno, custname from accounts” ; L
Account2.ltems.Clear();
var rdr = cmd.ExecuteReader();
while (rdr.Read())
if (rdr.GetInt32(0)!=selected.id)
Account2.ltems.Add(new Aclinfo (rdr.GetInt32(0), rdr.GetString(1)));
rdr.Close();
}
}
private void OKButton_Click(object sender, RoutedEventArgs e)
{

}

private

{

Accountl.ltems.Clear();

selected = Accountl.Selectedltem

void Accountl_SelectionChanged(object

sender,

as Aclnfo ;

Acinfo sub =((bool)PayOut.IsChecked) ? selected : ((

SelectionChangedEventArgs e)

bool)PaylIn.IsChecked) ? other :

null ;
Aclnfo add = ((bool)PayIn.IsChecked) ? selected : ((bool)PayOut.IsChecked) ? other : null ;
try
{
var tr = db.BeginTransaction();
var cmd = db.CreateCommand();
if (sub!= null)
{
cmd.CommandText = "update accounts set balance = balance -" + Amount.Text+ " where
cmd.ExecuteNonQuery();
}
if (add!= null)
{

The Pyrrho BookMay 2015)

cmd.CommandText = "update accounts set balance = balance+" + Amount.Text+ "where
accno=" + add.id;
cmd.ExecuteNonQuery(); 0 MainWindow - &
1[' Commit()' Account | Fred
Balance.IsChecked = true ; I’?*IC“'B‘;TME
Cash.IsChecked = true ; O Payn
Account2.Select edIndex= -1, ® Pay Out
Accountl_SelectionChanged(sender, null); ¢ [10000.00
catch (Exception ex) To
{ @® Cash

Status.Content = ex.Message; () Account

}
}

eck ACCOUNTS.SUFFICIENTEUNDS fails for table

For reasons of space the Ul code is omitted here.

Examination of the code above is for most purposes a sufficieric
introduction to the ADO.NET API. The only aspect that is not obvious is that you can only have one
DataReader open per connection: this is an ADO.NET restriction. If you have a single @onaedti

you open a DataReader with rdr=cmd.ExecuteReader(), then you must call rdr.Close() before you open
another reader. (You can have several connections open but in that case you are not guaranteed that
they will see exactly the same data as they hstegted at different times.)

odn ¢KS WI @I [A06N)INE

The Pyrrho Java Connector OSPJC and the org.pyrrhodb.* package have been significantly modified as

of April 2015. In earlier versions of Pyrrho there was an attempt to allow client applications to define

the data model unilaterally using Java annotations, in the manner specified for javax.org. From around
GSNEAZ2Y nop (GKAA Kra NBlIffeé 0SSy dzyiSylrotSz |yR
data model will in future be reported as errors.

The Ibrary is contained in OSR®® in the Open Source Distribution of Pyrrho. It is best to copy this
folder to where your Java project is and compile and execute with

javac Zcp . Xxxxx.java
java Zcp . XXxx

Some features of JDBC 4.1 are completely incomeatilith the architecture of PyrrhoDB (and the
SQL2011 standard) and thus are unlikely to be incorporated at any stage. These include the
DriverManager class, the SQLPermission class, PreparedStaments and their parameters, DataSources
and Savepoints. The asaption is that clients open a Connection to a database, and use Statements
and ResultSets to manipulate the database.

On the other hand, the intention is that entities specified as such in the database metadata should be
retrievable using stronghyped @eneric) clieniside methods with the help of reflection. Specifically,
singleentity short cuts from Connection will lead to generic versions of first() and next() that
automatically populate the public fields of specified entity classes.

import org.pyrr hodb.Connection;
import java.sql.Statement;
import java.sqgl.ResultSet;

public class JCTest
{

static Connection conn;
public static void main(String args[]) throws Exception

{

conn = Connection.getConnection ("localhost","def","guest","def");

HY

The Pyrrho BookMay 2015)

CreateTable();
ShowTable();

}

static void CreateTable() throws Exception

{
try {

conn.act("drop table a");

} catch (Exception e) {}

conn.act("create table a(b int,c char)");
conn.act("insert into a values(1,'One"),(2," Two")");

}
static void ShowTable()

{
try {

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from a");

for (boolean b = rsfirst();b;b=rs.

{

next())

System.out.printin(""+rs.getint("B")+"; "+rs.getString("C"));

}

catch(Exception e)

{

System.out.printin(e.getMessage());

}
}
}

o ®p t{\NRULE 23

The Open Source Edition of Pyrrho also comes saithe support for SWProlog. This is contained in
a module pyrrho.pl which is part of the distribution. The code is at an early stage, so comments are

welcome. The following documentation uses the conventions of theEdlbg project.

The interface wittBW1Prolog is implemented by providing SRfolog support for the Pyrrho protocol
(see technical details in the Pyrrho manualhe following publiclyisible functions are currently

supported:

connec(-Conn
+ConnectionString

Establish a connection the Open Source Pyrrho
server. Conn has the form
conn(InStreaminBufferOutStreamOutBuffe). Codes
in OutBuffer are held in reverse order.

sgl_readef+ConnQ-Connl
+SQLStringColumn}

Like ExecuteReader on the connection. Conn0. Cg
is the updated connection. Columns is a list of ent
of form column(NameTypg .

read_row(+Conn@-
Connl,+Columns,
-Row)

Reads the next row (fails if there is no next row) fr
the connection Conn0. @ol is the updateq
connection. Columns is the column list as returr|
from sql_reader. Row is a list of corresponding val
for the current row.

close_readef+Conn

Closes the reader on connection Conn.

field(+ColumnstRow+Name-
Valug

Extracts a namedalue from a row. The atom null
used for null values.

H

The Pyrrho BookMay 2015)

o®dc [Lbyv
Languagéntegrated Query was an innovation in C# 3.0. Ling allows queries of the sort

var queryl= from t in things where t.Cost> 300 select new {
t.Owner.Name, t.Cost };

to be writtendirectly in C#.

The Pyrrho support for Ling is therefore inspired by the idea of supporting queries to simple small
databases, and avoiding declarations and annotations wherever possible. Thesidbjects can

be modified using the methods in s&8.6 but queries should always be to a new connection. The
Ling support is only for singomponent primary keys (they can be any scalar type and do not have
0S OFfttSR GLRéUVO®

The following complete program works with a database called home, which contairtslbles with
the following structure:

create table "Person” ("Id" int primary key, "Name" char, "City" char,"Age" int)
ONBIFIGS Fr0tS btKAY3Ib O0bLRb AYyd LINAYIFINE (1Sexbhbhgys

Then theRole$Class system tablseé Appendix Bprovides text for the two class definitions as
below.The PyrrhoConnect connects to the database as usual, and the database is opened. Two
PyrrhoTable<> declarations form a link between client side data and data in the home database. Then
the LINQ machinery is available. (For the program to produce output, there needs to be some data in
the tables.)

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Pyrrho;

namespace ConsoleApplicationl
{
/Il <summary>
/Il Class Person from Database home, Role home
/Il </summary>
public class Person {
public System. Int64 Id; /I primary key
public ~ System. String Name;
public ~ System. String City;
public System. Int64 Age;
}

/Il <summary>
/Il Class Thing from Database home, Role home
/Il </summary>
public class Thing {
public System. Int64 Id; /I primary key
public Person Owner;
public System. Int64 Cost;
public ~ System. String Descr;
}

class Program
{
static void Main(string [] args)
{
/I Data source.
PyrrhoConnect db = new PyrrhoConnect ("Filesshome");

db.Open();

/I constructs an index for looking up t.Owner as a side effect
var people= new PyrrhoTable <Person >(db);

var things = new PyrrhoTable< Thing >(db);

/I Query creation.

The Pyrrho BookMay 2015)

var queryl= from t in things where t.Cost> 300 select new {t.Owner.Name, t.Cost

/I Query execution.
foreach (var t in queryl)
Console .WriteLine(t.ToString());

var query2= from p in people
select new {p.Name, Things= from t in things
where t.Owner.ld == p.Id select t};

foreach (var t in query2)

Console .WriteLine(t.Name + ")
foreach (var u in t.Things)
Console .WriteLine(" "+ u.Descr);

}
db.Close();
}
} ~ ~ e
odt 520dzYSydua

5FGFo6lasSa 2dziflad KFENRgFNB yR a2F06F NS LI I dF2 N
today after 50 years. Databases need to be designed for interoperability, so that the data formats will

still make sense years from now. leboratories we have been looking at how databases can be
accessed from a variety of languages and systems. In the labs, we have been using Windows systems,

but as many of you will know, the computing industry has been very careful to ensure that systems

can work together over the Internet.

TCP/IP is a good start and helps overcome many difficulties by enabling clients and servers to
communicate. Java and PHP are available on all platforms, and even C# is available on Linux if the
Mono runtimes are installd

In particular, we have looked at how the very different worlds of .NET and PHP can communicate.

There are many examples today of aNGS f | G A2yt YR ab2{v[é RFGFOLF &
various reasons depart from the standard SQL and relatidat@base design. Some of these issues

were discussed earlier in this course.

The point of view strongly expressed in this book is that relational DBMS offer a valuable general
purpose data management infrastructure, and that their most valuable benefistiae ACID
properties, especially consistency and durability.

One of the more interesting NoSQL databases today is MongoDB. MongoDB provides-leslsema
data managementforJSANA 1| S G R2 OdzyYSy it aé¢ ARSYUATFTASR 0@ | &LISC
in the following based on the documentation availableldgips://www.mongodb.com/.

To select a document from a MongoDB collection, a query consists of a Json object with a set of key
value pairs: the result set is thset of documents in the collection that match these properties. The
properties are not limited to equality conditions. This is a very powerful and attractive way of selecting
data from large distributed collections, and much to be preferred over stan8@xd in many cases.

Mongo does not use SQL, does not support transactions (it does claim strict consistency) and does not
have mechanisms for creating joins. | have begun to develop a MongoDB service offered by the Pyrrho
server that when complete will offgull ACID guarantees on top of the full Mongo service. It will do

this by running on the Pyrrho database engine, enhanced as necessary.

The enhancements turn out to be very exciting as extensions to SQL. SQL already allows columns in
relational tables ¢ contain structured types and XML data. It is exciting to allow integrity and

https://www.mongodb.com/

The Pyrrho BookMay 2015)

referential constraints to apply to fields within such structured objects. For example, in any document
collection the _id key is the primary key: it is a field within the JSiQétt.

2 A0K / 2RRQ& LINAYOALX Sa AYy YAYRI teNNKz2 +Ftft2ga Si
anything that can be done using the Mongo service can also be done using the resulting extended SQL,
including the construction of document sets.

Pyrrho provides a MongoDB service, but the PyrrhoCmd client does not have the verbs such as find(),
remove() etc. For simplicity we will allow PyrrhoCmd to be used by extending SQL a bit.

[SdQa Ftt2¢g {v][&e&y ibegnningitiiDOE dENIRaNE standard QmizY Sy (i & =
create table people(doc document)

Weg2y Qi aLISOATE LINAYINE (188 o0R200pARO a GKAAa Aa
insert into people values JAMEY & 3G 263STATUS! GROUPSLG Y S& RENTI a4 ¢ 8 Y O

That is, we allow Json literals in value lists. Any document can be added to this people table. (Alas,

Mongo is case sensitive so we need capitals here or else we need double quotes below). For the query
SEIFYLX S GKIFG F2ff 2abnaastRayidardB@S 13X SiQa fft2¢

select doc from people where doc.age>18 order by doc.age

where we aIJow the standard dot notation in SQL to take us into thg fields of doquments. We will of
O2dzNBES &dzLJLI2 NI az2y3d25. Qa fF NBHS O2With$hésé weogn 2 F & LI
rewrite the above query in an alternative form:

select *from people where doc={age: {$gt: 18}} order by doc.age

From this we can begin to see how complex search conditions can be pushed down to remote
partitions. We can even allow Mongo. Q& SELX AOA G LA LISt AySay

select {aggregate: peopleipeline: [$match: {age: {$gt: &} },
{$group: {_id: $age, count: {$sum: 1}}},
{$sort: { age: 1 }] } from static

In such expressions Mongo uses $ in value expressions to refer to other fields: &g.}{would set

field a to the value of field x. We also see here that we can get select expressions to construct new
documents for us. In simple cases the resulting documents look like the one in the select statement,
but with all these special operat®in this case the resulting document looks like the following:

9 YARYXZI @GYMI 21Y (GNHZSI NBadAZ Gy w9 3ISY mpzZ O2 dzy

Updates are actually quite complex in MongoDB, and the use of special operators is inesdaable
example the $set operator is used to add fields to a document. In Pyrrho we can allow

update people set doc = {$set: (friSYRY G CNBRE YY SKSNB R20O0dyl YST Qaoc
Use these forms to explore the mappings given in the MeRgodocumentation.

oy NNKg 624 fS@St RSardy

In this sectionwe discuss some of the fundamental data structures used in the DBMSdhta

structuresin this sectiorhave been chosen because they are sufficiently complex or unusual to require
such discussiobviously this sectiooan be skipped at a first or even later reading.

The Pyrrho BookMay 2015)

Almost all indexing and cataloguing tasks in the database are done by BTrees. These are basically
sorted lists of pairs (key,value), where key is comparable. In addition, sets and partial ordedrays
degenerate sort of catalogue in which the values are not used (and are all the singléwajue

There are several subclasses of BTree used in the database: Some of these implement multilevel
indexes. BTree itself is a subclass of an abstract cddissl ATree. The BTree class provides the main
implementation. These basic tree implementations are generic, and require a type parameter, e.g.
BTree<long,bool> . The supplied type parameters identify the data type used for keys and values.
BTree is usedhen the key type is a value type. If the key is a class type, CTree is used instead. In both
cases the Key type must implement IComparable.

The BTree is a standard, fully scalable mechanism for maintaining indexe®eB as described in
textbooks vay in detail, so the following account is given here to explain the code.

A BTree is formed of nodes called Buckets. Each Bucket is either a Leaf bucket or an Inner Bucket. A
Leaf contains up to N pairs (called Slots in the code). An Inner Bucket c@l@swshose values are
pointers to Buckets, and a further pointer to a Bucket, so that an Inner Bucket contains pointers to
bbm . dz01SG& FtG23SGKSNI 64t i GKS ySEG tS@Stéoo
values, and the Slots in Innbuckets contain the first key value for the next lowevel Bucket, so

that the extra Bucket is for all values bigger than the last key. All of these classes take a type parameter
to indicate the key type.

The value of N in Pyrrho is currently 32: thefpemance of the database does not change much for
values of N between 4 and 32. For ease of drawing, the illustrations in this section show N=4.

The BTree itself containg@ot Bucket

and some other data we discuss later . 6
Root(inner)

The BTree dynamically reorganizes
structure so that (apart from the root)
all Buckets have at least N/2 Slots, al
at each level in the tree, Buckets ar
either all Inner or all Leaf buckets, g
that the depth of the tree is the samg
at all values.

Leaves

The basic operations on-Bees are
defined in the abstract base class
ATree<K,V>:, ATree<K,V>.Add, ATree<K,V>.Remove etc. Static methods are used for most operations
because in almost all cases a new heasteucture is created if anything is modified (according to
principle 2.2.3). So, for example to add a new entry to a list of tables, we have code such as

CTree<.string,DBObject>.Add(ref tables, name, tb);

The basic format here is ATree<K,V>.Add(ref TKeg, Value) . For a multilevel index, Key can be a
Link (this is implemented in MTree and RTree, see section 3.2).

The following table shows the most commoniged operations:

Name Description

long Count The number of items in the tree

object this[key] Get the value for a given key

bool Contains(key) Whether the tree contains the given key
SlotEnumerator<K,V> Enumerates the pairs in thetBze
GetRowEnumerator(..)

(O JN0)

The Pyrrho BookMay 2015)

static Add(ref T, Key, Value) For the given tree T, add entry Key,Value .

staticUpdate(ref T, Key, Value) For the given tree T, update entry Key to be
Value

static Remove(ref T, Key) For the given tree T, remove the associatio
for Key.

Note that even where words like Update are used, any Tree is immutable: in particular the Update
operation returns a new Tree sharing many of its immutable elements with the old one.

Immutable trees of this sort are shareable. Pyrrho has two mutafiiecB types: these are Multiset
and RTree. These are not shareable.

For multivalued tree types (see logv) an additional parameter can be supplied to the last two
methods, e.g.

Static ATree<K,V>.Update(ref T,Key,OldValue,Value)

This replaces the association (Key,OldValue) with (Key,Value) (there may be other values for the
given Key).

There are may different sorts of Biree used in the DBMS. The Treelnfo construct helps to keep
track of things, especially for multilevel indexes (which are used for multicolumn primary and foreign
keys).

Treelnfo has the following structure:

Name Description
SqglDatdype kType Defines the type of a compound key.
SqglDataType vType The type of values indexed using the tree.

TreeBehaviour onDuplicate How the tree should behave on finding a duplicate key. The
options are Allow, Disallow, and Ignore. A tree taibws
duplicate keys values provides an additional tree structure t
disambiguate the values in a partial ordering.

TreeBehaviour onNullKey How the tree should behave on finding that a key is null (or
contains a component that is null). Trees used asxed
specify Disallow for this field.

int depth A shortcut for spec.Length

Enumerating the entries of a tree is done using the SlotEnumerator class. Like any .NET IEnumerator
implementation, this has the following basic operations:

Name Description

bool MoveNext() move to the next entry if any: return false if there is no next entr

object Current this has the form Slot(CurrentKey,CurrentValue) here (but see
below)

void Reset() start the enumeration again

There are currently arawd 100 different SlotEnumerator implementations in the DBMS, including 26
special enumerators for system tables, and 32 for log tables, and 12 for joins of various sorts.

The Pyrrho BookMay 2015)

The ATree method GetRowEnumerator returns a SlotEnumerator that traverses thefghesiee

in key order. There are two versions of this method, one of which supplies a Key for matching. This
will enumerator all pairs where the key matches the given one. Now for a strondgyed tree (no

key duplicates) the resulting enumeration whidve 1 or zero entries (a TrivalEnumerator or an
EmptyEnumeratorprovided the key supplied will be a constant

This is a very subtle and important point: we will see later that we can have expressions whose values
changes as an enumerator advances. Tlaesabviously not constant, and so if the Key value supplied

to GetRowEnumerator was such a value, while it would still be true that in each case there is either
one or zero matching pairs in the tree, we need to reset anema@merate the tree to find ouwhich.

On the other hand, it is such an important optimisation to be able to replace an enumerator with a
trivial or empty enumerator that it seems worth adding some machinery to the database engine to
keep track of which expressions are constant. Thidoine using the extension method IsConstant,
(the static class defining this is called Varies, in the Common.cs source file).

Note that even long values might not be constant: a long value might be a record number or defining
address, which will advancaidng an enumeration.

The ATree class provides the basic tree implementation that is used by all the tree types in the DBMS.

It also provides a standard mechanism for enumerating the Keys and Values of a tree, which allows
GKS dza8S 2F /1 Qa ¥F2NBI OHklues.Dthér Snglémeiitatichepivide Spediak = Y S«
actions on insert and delete (e.g. tidying up empty nodes in a multilevel index).

The main implementation work is shared between the abstract ATree<K,V> and Bucket<K,V> classes
and their immediate subclasses.

There are just 5 ATree implementations:

Name BaseClass Description

BTree<K,V>| ATree<K,V> The main implementation of-Brees, for a ondevel
key that is IComparable

CTree<K,V>| ATree<K,V> A similar class where the key is a TypedValue

SqlTree CTreedypedValue,| For onelevel indexes where the keys and values ha

TypedValue> readonly strong types

MTree CTree<TRow,long? For multilevel indexes where the value type is
Nullable<long>

RTree CTree<TRow,TRow For multilevel indexes where the value typ&i$Row:
Multisets are used for the final level in an RTree, an
so the RTree is not shareable.

All integer data stored in the database uses a k258 multiple precision format, as follows: The
first byte contains the number of bytes following.

| #bytes (=n, say)| data0 | datal | X | data(n1) \

dataO is the most significant byte, and the last byte the least significant. Theotdgh bit 0x80 in
dataO is a sign bit: if it is set, the data (including the sign bit) is a@sfiplement negative number,
that is, if all the bits are taken together from most significant to least significant, that data is an
ordinary 2scomplement binary number. The maximum Integer value with this format is therefore
220391

op

The Pyrrho BookMay 2015)

Some special values: Zero is represented as a $igg€0x00) giving the length as-0.is represented
in two bytes (0x01 Oxff) giving the length as 1, and the dati.aStherwise, leading 0 and bytes in
the data are suppressed.

Within the DBMS, the most commonly used integer format is long (&4, laihd Integer is used only
when necessary.

With the current version of the client library, integer data is always sent to the client as strings (of
decimal digits), but other kinds of integers (such as defining positions in a database, lengths ®f string
etc) use 32 or 64 bit machirspecific formats.

The Integer class in the DBMS contains implementations of all the usual arithmetic operators, and
conversion functions.

All numeric data stored in the database uses this type, which is a scalegdritemat: an Integer

mantissa followed by a 3Bit scale factor indicating the number of bytes of the mantissa that
NELINBASY(d I FTNIOGAZ2YIE @FfdSd 6¢Kdza adNAROGE & alLd
do with the number 10, but there gens no word in English to express the concept required.)

Normalisation of a Decimal consists in removing trailing 0 bytes and adjusting the scale.
Within the DBMS, the machirepecific double format is used.

With the current version of the client librargumeric data is always sent to the client in the Invariant
culture string format.

The Decimal class in the DBMS contains implementations of all the usual arithmetic operations except
division. There is a division method, but a maximum precision needs spécified. This precision is
taken from the domain definition for the field, if specified, or is 13 bytes by default: i.e. the default
precision provides for a mantissa of up 6°2L .

All character data is stored in the databasdJinicode UTF8 (cultuneeutral) format. Domains and
OKI NY OGSNI YFYyALz FGA2Yy Ay {v] OFy &aLISOATFE | aOdz
to the culture specified for the particular operation.

The .NET library provides a very good implemeataof the requirements here, and is used in the
DBMS. Unfortunately .NET handles Normalization a bit differently from SQL2011, so there are five
low-level SQL functions whose implementation is problematic.

From v.5.1 Pyrrho includes an implention of Documents as in MongoDB. Assignment of
documents follows the MongoDB prescriptions, wher@gkrators determine how new data is
combined into the existing document. The same mechanism is implemented for Update records in the
database, so Documerftelds in Update records normally contain these operators, and Pyrrho
computes and caches the updated document when the Update is installed in the database.

Document comparison is implemented as matching fields: this means that fields are ignored in the
comparison unless they are in both documents (the $exists operator modifies this behaviour). This
simple mechanism can be combined with a partitioning scheme, so that a simple SELECT statement
where the whereclause contains a document value will be propgadeefficiently into the relevant
partitions and will retrieve only the records where the documents match. Moreover, indexes can use
document field values.

The Pyrrho BookMay 2015)

Document matching recurses down to matching of fields, and then may involve comparisons of (say)
AWAGK 9WpP3iQYoY = a2 OFNB Aa GF1Sy Ay (GKS O2RAY:
with 4 rather than the other way around, so that Document comparison occurs.

Documents are always retained in memory as in MongoDB, and during updatesadtidying
Document is stored in the database, while the modified document is only in memory. The PhysBase
keeps track of the documents by indexes for (colpos,recpBslcument and (ObjectidDocument.

Documents in memory contain no reserved $ keys aparnf$id. A document containing $id is a
DBRef, and when this is referenced the second index above is used to retrieve the referenced
document.

Strong types are used internally for all transactlewel processing. The main mechanism for this is
the SqglDataType. It provides methods of input and output of data, parsing, coercing, checking
assignability etc.

Domain constraints are applied at Level 2, i.e. at the point where a a Record or Update is being
prepared for serialisation to the physicatdbase, but they can use level 3 information (e.g. lookup
tables implemented using table references). Such dependencies are tracked using the referers list, so
that updates to the referenced tables may be restricted: for example where a column uses mdoma

a table uses a column, a type uses a record structure (defined by a table). Changes to domain types
therefore cascade through the-memory data structures at level 2 when a schema change is read
from the physical media or prepared for serialisation.

This means that the Level 2 PhysBase has a default standardTypes structure that contains the names
standard types with domaindefpos marked as undefined. Obviously, this ATree structure gets updated
as standard types are reified in the PhysBase.

The SqlDataype structure also controls the fields (columns) of a structured type, the supertypes
(under) a data type has, and the order function that is used. It is possible to get hold of a SqlDataType
for a record by using the DataTypeTracker information in thesBage. This enables types with
custom orderings to be used for primary keys, since the indexes are constructed during database
loading. However, the actual names of columns and types are not considered part of the SglDataType
(they are roledependent, so e generated at the session level). For this reason, types with the same
name are not necessarily compatible, and error messages try to give numeric references in addition
to the names.

Because of custom orderings and rbl@sed naming, at this level it @so possible to start parsing
(e.g. a procedure body), using the owner role for the functions and structures concerned.

Changes installed at level 3 of the database affect the SqlDataTypes. The DataTypeTracker currently
can be used to find the data ty a previous version of the database, as this is needed for reading
any data in the data file.

All SglDataTypes used for persistent data are located in the PhysBase. They should not be stored
anywhere else. However, (a) during a transaction, each inteiaedesult has an SqlDataType (b)
each database knows what standard data types are persisted in that database. For rapid type
identification, SglDataTypes can be looked up in two indexes: one for all types in use in the transaction
(ToString(>bool), ancone for persisted types for each PhysBase known to the server: each PhysBase
has types (ToStringfdefpos). (c) each role has an index of named domains defined in that role
namedDomains (namedefpos). Note that the CompareTo function for SglDataTypéaded on
ToString() which does not include either pbname or defpos: thus SqglDataTypes can be considered
equal for assignment etc but may need to be reified for a particular database if the value is made
persistent.

The Pyrrho BookMay 2015)

The following wetknown standard typeare defined by the SglDataType class:

Name Description

Null The data type of the null value

Wild The data type of a wildcard for traversing compound indexes
Bool The Boolean data type (see BooleanType)

RdfBool The irtdefined version of this

Blob Thedata type for byte[]

MTree Multi-level index (used in implementation of MTree indexes)
Partial Partiallyordered set (ditto)

Char The unbounded Unicode character string

RdfString The iridefined version of this

XML The SQL XML type

Int Ahigh-precision integer (up to 2048 bits)

Rdflnteger The iridefined version of this (in principle unbounded)
Rdfint value>=2147483648 and value<=2147483647

RdfLong value>=9223372036854775808 and value<=92233720368547758
RdfShort value>=32768 andvalue<=32768

RdfByte value>=128 and value<=127

RdfUnsignedint value>=0 and value<=4294967295

RdfUnsignedLong value>=0 and value<=18446744073709551615
RdfUnsignedShort value>=0 and value<=65535

RdfUnsignedByte value>=0 and value<=255

RdfNonPositivelnteger

value<=0

RdfNegativelnteger

value<0

RdfPaositivelnteger

value>0

RdfNonNegativelntege

value>=0

Numeric

The SQL fixed point datatype

RdfDecimal The iridefined version of this

Real The SQL approximajgrecision datatype

RdfDouble The iridefined version of this

RdfFloat Defined as Real with 6 digits of precision

Date The SQL date type

RdfDate The iridefined version of this

Timespan The SQL time type

Timestamp The SQL timestamp data type

RdfDateTime The iridefinedversion of this

Interval The SQL Interval type

Collection The SQL array type

Multiset The SQL multiset type

UnionNumeric A union data type for constants that can be coerced to numeric or f
UnionDate A union of Date, Timespan, Timestamp, Intefealconstants

oy

The Pyrrho BookMay 2015)

| KILWSNIFm &S { SNIWSNA

In this chapter, we look at the architecture of a database service from the viewpoint of the
communication between client and server. We will consider some alternative architectures along the
way.

ndMS NIDYIRE &8 SNIDA OS &

The usual model of computing is that a great many processes (programs) are running on any computer
at any time. Under Windows or Linux around 50 processes have started up by the time you log in.
These are almost all services, some are parthef operating system and some are separate

executables called servers (in Windows the boundary is often blurred since DLLs are called operating
system extensions!).

Separate services are set up when something needs to be shared between processes (bseveen u
on a multiuser system, or between tasks where several are running at the same time). What is shared
might be

T I NBaz2dz2NDOS>T &adzOK & | LINAYdSN
T I RFEdGF UOfS
T I O02YYdzyAOl o2y 3JlLGSsle a2 GKFG YSaal3a®a (2 21

IS4G 8WzYdetd
Some resources (such as the processor, memory, devices) are shared directly inside the operating
a2adSY IyR GFajla NBIIANARY3I GKSY IINB {SLIW Ay ydzy€
a program needing a resource whose lock is called Bll®ay) will wrap a section of code with a
RSOfII NI GA2Yy adzOK a t2010aé[2010 9 X YI FYyR (GKSy
is available, and the lock is released at the end of the critical section.
ndaew t kLt aSNIAOSaA
Forotheri KAy3a GKFG IINByQil G ljdAGS adzOK | t2¢ fS@S
very popular way of doing this is to use TCP/IP. Each server is assigned a port on which it listens for
requests for its service. When a client sends a messagest@dhni, the TCP mechanism creates a-two
way communication channel (using a new server port) for subsequent communication in that session.

Messages on this-@ay channel will generally follow an applicatidaefined protocol of request and
response, maybe oluding callbacks and exception handling.

All operating systems have limits on the number of ports that can be open at any time, so it is
important for the TCP channel to get closed as soon as possible. This will happen if either the client or
server proces terminates, but obviously it is important not to wait until then.

Many application protocols are designed to be very shernn. A Web service lasts only as long as it
takes to respond to a single request from the client. An email service remains t¢edest for long

enough to send a message. In these cases, the messages between client and server are simple and
text-based. For email, there are headers such as To:, From: and Subject:, followed by the message
body. For web servers, the first line of thejuest contains a verb and a URL, and the last line is blank;
while the response begins with a status code, then headers, a blank line, and then the body of the
response. (PUT and POST requests also have a body following the blank line.)

Services almostlways listen on weknown port numbers, although there is always the option that
servers and clients agree on the use of some other port. These port numbers are assigned by the
Internet Assigned Numbers Authority\w.iana.org, so you can look up the one you want. Even
Pyrrho has its own port number of 5433.

On a PC you can see what listeners are in operation by using nedsfiat If you see an IP address in
square brackets with :s in it this is an IPv6 addregs,[g].

o

http://www.iana.org/

The Pyrrho BookMay 2015)

nagoKS | LILJX AOF a2y LINRPG2O02(

hyOS (KS | whyjichardel is astalylishéd, ordinary /0 operations for Steams can be used.
The size of the first packet received is used in thetereind TCP packet negotiation. For many TCP/IP
services (e.HTTP) there is only one message in each direction, so this is fine. But if there will be many
messages, it is important to remember that the packet size negotiation is done again if the packet size
changes. For best results always ensure that all paclsgtd on a channel have the same size. This
simple trick can affect communication speeds by a factor of 1000. Pyrrho always uses a packet size of
2048 octets.

For clientserver communications it is often important to use asynchronous 1/O calls. Thisasekt
AYLRNIFYG F2N AYGSNI OGAGS LXK AOFGA2YyAY &2dz R2y ¢
wits for a reply from a remote server. Many programming systems (such as Windows Forms) already
ensure that the interactive events are done by pa@te thread, but this brings its own complications,

and the runtime system will insist on croghread method invocation (Invoke()) where required.

The messages on this twaeay communication channel are called (application) protocol data units

(PDU). Foexample, if your sporting club was not using SQL, you might have messages for enrolling a
new member, for recording a match, for a score etc. The start of the message might have an identifier

to say which message it is (using a small integer 1,2,3 éodifferent actions) and a set of strings for

the different data involved. If you were using SQL, each request might just be a string consisting of an
{v][] &adlrdiSYSyid o6So3d GAyaSNI Ayidz2z YSYOSNBR o d
already @ne during the connection step.

ndankS Of ASyid f Ao NI NE

Since a service is designed to be used by a number of different applications, there is usually a client
side library whose methods manage the Wmvel communication with the server. Since Kevel

details will usually be platforrdependent, it is considered bad design for a client application to write
directly to the communications stream. Instead, programming conventions have grown up for
different sorts of service so that (for example) client libearfor database services all look very similar,

as we have seen in Labs 1 and 2 in this course.

In the early days of programming distributed systems, a monolithic application would be simply
broken into client and server by placing some of its componénisctions etc) on the server side.
Application code on the client side would be unaffected, because proxy functions were provided on

0KS OfASyld &ARS gA0GK GKS alryYyS ylIYSa FyR LI NF¥YS
parameters for transmission tine server. This data would be disassembled on the server and used

to cal the real serveside function, and so on. Nowadays we try to design in cBenter design from

the outset.

napSaarzya

As we have seen, the lifetime of the connection is an irtgrgrconsideration: the length of time
connected to the server using PCT is called a TCP/IP session. For database services it often happens
that very large amounts of data need to be transmitted between the client and the server, involving
many steps andlient-side decisions. As we will see, the whole notion of database transactions is very
important. Assuming that the processing envisaged by the application involves zero or more

transactions, we can imagine that a transaction involves one or more T@B#iBrss. We will discuss
this further later in this course.

At this stage, though, we will note that if the server needs to preserve information about the whole
ASNASa 2F GNryalrOGA2ya o6aaSaairzy aulaSéo FNRY
management on muliserver installations where subsequent sessions might be on another server.
Either steps will be taken to ensure that subsequent requests from the same client are dealt with by
GKS alYS aSNWSNI 6daS NI SdshdreBasdioyi statedséemeiow.2 NJ & SN S NA

The Pyrrho BookMay 2015)

Another issue is that the TCP/IP setup time referred to earlier can become a significant cost. Some
client server systems create pools of connections and threads to try to make this process as efficient
as possible.

For bothof these reasons, there is an argument for holding a connection open for the duration of a
transaction, even though this might be quite a long time.

ndsck Gl ol 88 02y OdzNNBy O8

In the meantime, the database server needs to be able to deal with other cliafitis.this design, it
becomes inevitable that the database server will manage multiple clients concurrently (dealing with
requests in different threads). Even requests from different clients for the same database may be
handled at the same time.

How databae servers manage this is crucial. In order to preserve consistency we cannot see a jumble
of halfdone transactions when we look at a database. Transactions (as we wilkss:lo be atomic.

To achieveconsistency and atomicity we could lock parts oé thatabase in advance, delaying
conflicting transactions until we are done (pessimistic), or we could simply allow all transactions to
proceed in isolation, only identifying conflict when transactions commit (optimistic).

Either way, the database serverggramming will be complicated.

As mentioned above, on big installations there will be many servers. The scenario that a request might
be handled by any of them is quite common, but there is an option to place different databases on
different (clusters ofervers. Large databases might be partitioned so that data is spread over many
servers. We will consider later in the course the different ways that servers can cooperate on
managing a database.

Viewing this problem from the viewpoint of the applicatione wote that on the Internet, the

traditional & LJS & & AsWlkién bfitrénsactions locking the resources they are considering updating

Aa oARSte O2yaARSNBR dzyadzAaldlofST FyR Y2aid @SyR2N
(e.g. seeelbushaand Lindstrém2014) relying on compensation methods for resolving conflicts (e.g

Lessner et al 2012). Most application frameworks designed for the Web use a combination of
optimistic concurrency (on the network) and pessimistic concurrency (in the PBMSuch hybrid

solutions really place the responsibility for verifying consistency on the application, where it does not

really belongWe return to this problem in Chapter 5.

ndstk GFolasSa yR G4KS UfS aeadasy

Changes to the database need to be madeatiie, so they need to get written to durable media, such

as hard disks. The simplest possible sort of database file organisation would have a single (text?) file
per database. These days computer memories are so large that many databases would fit iry memo

¢ we can almost imagine the whole thing simply being written to disk periodically. But in the interests

of speed, we also have indexes to locate information very quickly, and these typically occupy similar
amounts of memory to the data itself.

In the ol days, computer memories were small, so that the data and indexes were kept on disk. Pages
being modified would be in memory, and clever page replacement algorithms would ensure that the
disk contents kept pace with changes to the data.

Pyrrho has alifferent approach: all the indexes are kept (only) in memory, and the disk file consists
exactly of the transaction log. This makes the committing of a transaction very simple, typically a single
disk write operation, appending the transaction data to gred of the database.

It is obviously good practice for the DBMS to have exclusive access to the database file while it is
operating.

The Pyrrho BookMay 2015)

nayt G SNYIFa@dS | NOKAGSOG dzNB a

Needless to say, various alternatives to the above architectural description are possilbl@e@sonal
computer, sharing of data is less of an issue, so for example MS Access is a database product that
supports no sharing at all. If such a database is on a shared folder, whdtecKileg mechanisms
(exclusive access above) are the best tlzat Ibe managed.

Another nesharing possibility is where an application has an embedded database. This is a persistent
store in the application that is not accessible by any other application. If the database actually uses
database technology such as SQLntttee application will include a database engine in its executable

code.

Ly 20KSNJ OFrasSas GUKS RFEGFoFaS GSOKyz2f238-{Nviéf Saa
databases such a twitter feeds. Such arrangements involve rapidransacted pblication of data,

and nobody minds too much if a tweet gets overwritten. Since the data is not structured, there are no
indexes to keep in synchronisation with data, and no database constraints.

S0 Fy20KSNJ a2NI 2F RIF G 0l Zo08singh whera NBeDred@flyR Ay d
aggregations from data sources have been made accessible. Typically these systems avoid trouble by
disallowing updates to the warehoused data.

Finally, at the ultrefast end of the spectrum we have-memory databases where wing to durable
media does not matter.

In chapter 6 v will spend some time looking at information security issues. In efienter systems

it must be assumed that authentication is dealt with at the time that connection to the server is
established. Seca protocols such as HTTPS can help with iésy databases are designed for use

by people playing different roles: bank managers, bank tellers etc. These roles could be separated out
completely by the client applications, but in this course we will gthidw good database design can

help with maintaining a more secure system. Database objects can have permissions associated with
them for access by people in different roles; and users can be authorised to exercise roles at different
times.

The Pyrrho BookMay 2015)

| KL 8@ py3ad da hlLleYAadaaO ¢NFyal Os 2
In this chapter we return to the question of transaction control as a way of ensuring data consistency

in multi-user databasesAlthough all commercial relational RDMS products use only pessimistic
concurrency control ltere is a long tradition of research that optimistic concurrency provides a better

solution (e.g. Menascé and Nakamishi 198@ritsa et al 1990, Kaspi and Venkataraman 201H4g.

biggest conceptual hurdle in developing applications for Pyrrho is the fusgtimistic transactions.

It is very important for programmers to accept this approach as a fact of life, explained in the following
paragraphs, and not try to imitate a locking model.

All good database architectures today support the ACID propertiegaofsactions (atomicity,
consistency, isolation and durability). Database products that use pessimistic locking (such as SQL
Server or Oracle) acquire these locks on behalf of transactions by default, and it is not usually
necessary for an application to alewith these issues directly. In a pessimistic locking product,
transactions can be delayed (blocked) while waiting for the required locks to become available.

A transaction can fail because it conflicts with another transaction. For example, with sgsimi
locking, the server may detect that two (or more) transactions have become deadlocked, that is, all of
the transactions in the group is waiting for a lock that is held by another transaction in the group. In
these circumstances, the server will aborte of the transactions, and reclaim its locks, so that other
transactions in the group can proceed.

With pessimistic locking, if a transaction reaches its commit point, the commit will generally succeed.
If it does not complete, it retains locks on datakaresources until it is rolled back. With SQL Server,

for example, once a transaction T begins, it acquires locks on data that it accesses. If it updates any
data, it acquires an exclusive lock on the data. Until T commits or is rolled back, no otlsactiam

can access any data written by T or make any change to data read by T.

With optimistic locking, the first sign of failure may well be when the transaction tries to commit. A
transaction will fail if it tries to make a change that conflicts witlthange made by another
transaction.

In both cases, it is important for database applications to be prepared to restart transactions. In the
case of pessimistic transactions this would normally follow deadlock detection or timeout. With
pessimistic lockingn attempt could simply be made to-exquire the same locks: this step could be
LISNF2NYSR Fdzi2YFGAOFIff& o0& GKS aSNBSNW® | 246SOSNE
of SQL statements to be simply replayed, since generally the stahe ofatabase will have changed

(this is why the transaction failed), and the application should start again to see what to do in this new
situation..

In the classic transaction example of withdrawing money from a bank account, a transaction for
making a rgfg @ FSNJ YAIKG AyOfdzRS |y {v] adrasSySya =27
balance=balancet n n ¢ 2 NJ G dzLJRIF GS Yeél O002dzyi aSidi ol flyOSTonj
form makes them apparently easier to restart, but the point being made here is thatild be the

Of ASYyd FLILXAOFGA2Y QA NBalLRyaArAoAftAGe (G2 RSOARS AT
server should not simply make assumptions about the business logic of the transaction. Pyrrho
transaction checking includes checking tlata read by the transaction has not beehanged by

another transaction.

pdm A0SYIFNA2 2F UGNl yal Oa2y O2ybAOoil
To simplify the discussion, let us consider operations on a table Products.
Products: (id int primary key, description char, quantity intak{guantity>=0),price int)

In this system, some transactions will involve a purchase (failing in the absence of sufficient stock)

The Pyrrho BookMay 2015)

A(X): SELECT price FROM Products WHERE id=A.x; UPDATE Products SET quaniiyAelEREty
id=A.x

Some transactions will geiest several items (failing if any item is unavailable)
B(X,X..,%): BEGIN TRANSACTION)A&%);..;A(%); COMMIT

Now for normal levels of activity, these transactions execute very rapidly, and concurrency is not likely
to be a problem. In order tdvave problems with transaction failures we need to assume huge
transaction volumes, a huge size to the Products table, or that the Products table is geographically
distributed over many servers, etc. So, assuming that we can imagine transaction conftlicingcat

all, we note that transactions of type B(xx,) will conflict with any concurrent A(x) where xsame

i.

Other transactions will involve adjustments to the stock levels or prices. For example, we might
implement a policy of discounting pléfil items whose description matches a given pattern (e.g.
Wr. h[¢72 Q0

C(y): UPDATE Products SET price=price*0.9 WHERE quantity>40 AND description like C.y

This transaction will conflict with any A(x) such that description(x) is like y , even if quardidy (dpt

all database experts consider that conflict arises here. With PCC we can imagine that all rows of
Products would be locked for the duration of C(y) transaction. With OCC, some implementations might
not report any conflict on the grounds that C@iges not modify quantities. However, as transactions

A and B also compute a required payment for the items purchased, the cost of the purchase might be
debatable if transaction C was concurrently applying a discount. On these grounds we would say that
C(y)will conflict with any A(x) such that quantity(x)>100.

{dzLILI2 &S t NRRdzOG & O2yiGlAya Iy AGSY o6npc=Qpnn oEp
GKS O2ad 2F ! A& odnn FyYyR GKS t NPRdAzOGa& bytApt S NBI
GKS O02ad 2F ! A& wodtrn YR GKS t NBRdzOGa dGlFofS O2
serialisability of transactions should ensure that no other outcomes are possible. In the absence of
proper concurrency control, both A and C mighoceed on the basis of a snapshot of the Products

table at the start of their transactions, so that A would cost 3.00 and the Products table would have
6npcQpnn oEp . h[¢QImManIudTnod LYy {(KAA o0dzaAySaa
in scenarios such as control of dangerous industrial processes, such uncertainties could be a matter of

life and death.

To ensure serialisability, we must conclude that A(x) and C(y) will conflict if A(x) affects the value of a
Boolean expression used byi@. if quantity(x)=101 and description(x) like y. In this scenario a conflict
will also be detected if C actually updates the price used by A.

As a result of these considerations, the conflict implementation rules require that changes made since

the start of a transaction are checked for conflict with anything read by the transaction. Suppose that

C starts before A starts, but A starts and commits before C attempts to commit. Then C will fail,
because one of the quantities read by C has changed. ¥GYcobida FANRGZ GKSy | gAf-
changed.

pd@NI yal Ose2ya YR [201Ay3 tNR(GI202¢f a

In chapter26 S &l ¢ |y AYyUGNRBRdAzOGAZ2Y (2 GKS RSOFAfSR 2L
mechanism. The main commercial database systems use pessifioisking) protocols. The normal

argument in favour of locking is that once locks are acquired, a correctly formed transaction can be
guaranteed to complete, whereas an optimistic system might have to start over having done some

work. However, in pessimistsystem the process of acquiring locks can be lengthy and may require

the application to release its locks and start again. Years ago there was a lot of debate in both
directions, with many research papers claiming that optimistic methods result in migraighput

The Pyrrho BookMay 2015)

(e.g. Kung and Robinson 1981). So in both cases, transaction failure can result from conflict: for
pessimistic control, it is a conflict of intention, while for optimistic control it is a conflict of action.

Optimistic Concurrency Control (OQ€ not widely used in commercial DBMS products. Although it
always produces serialisable transaction behaviour, there is no way of guaranteeing in advance that
any given transaction will be able to commit. With pessimistic concurrency control (PG@jation

is allowed to delay starting until it has succeeded in locking the data it wishes to read or write, and
these locks are maintained by the DBMS until the end of the transaction that owns them.

PCC is subject to deniaft-service attacks, since attacker can repeatedly request locks on a large

set of data items, thus delaying legitimate transactions. Such an attack might leave few traces, since
GKS RStlFe gAfft 200dz2NJ S@GSy AT GKS FGdl O1 SNRa (NI y
In widely distributed information systems made possible by the Internet, the impossibility of
maintaining database locking while a user organises their payment methods has led many to abandon

the use of ACID databases altogether (Lessner et al 2012). Where |pcktesses have been

combined with such distributed transactions it has been found necessary to introduce the idea of

compensation processes, effectively to automate the cancelling of supposedly durable transaction
commits.

Recent work from Microsoft, Gofay and IBM supports optimistic transaction management by using
versioning (e.g. Garus 2012, Guenther 2012, IBM 2011), and this represents a big change from always
using locking protocols. In fact, optimistic transaction management is the default in Rlidras Qa 9y G A @
CNI} YSg2N)] X D223ftSQa 5Fd0Fa02N8X YR L.aa 9W. AYLIX

At first sight the requirement at the Internet level for optimistic transactions seems fundamentally at
odds with the requirement in the large commercial database systems to ug&indpprotocols.
Numerous papers (e.g. those cited above) provide complex workarounds but for many purposes the
difficulties are not as severe as might be expected.

The first reason is that internet applications deal directly with databases on behalfiohihéiple

users: as far as the database is concerned there is only one Similarly, the databases at the heart

of messaging systems have only one client, namely the enterprise server, and different enterprise
servers (Exchange, BizTalk, WebSphtrewse different databases.

The second is that concurrent access to the database is often limited by tuning arrangements. In many
DBMS there may be parallel transactions, but the steps in these transactions are serialised by the TCP
request socket mechasm: few DBMS use mulii K NS+ RAy 3 i GKS aaGdSL) £t S@St o
multithreading is at the connection level, and assumes that transactions for that conneon

serialised by the client application so that any thregmbcific data is dispodeof at transaction

boundaries.

Finally the granularity of locking can be adjusted. For normatyased CRUD operations Pyrrho
detects conflicts at the row level and detects conflicts at the level of database objects only when
schema changes are being dea This level of granularity is slightly harder to achieve in pessimistic
systems since a great deal of work may be required in advance to identify exactly which rows will be
updated.

pdoy LIAK2G Aazftla2y

Snapshot isolation is when transactions canne¢ she activities of concurrent transactions, but
proceeds with a view of how the database stood at the time the transaction started. Many DBMSs
support snapshot isolation (SI) as an optional mode: Pyrrho enforces it.

In databases that provide 0 f E SRA Gt Aal o6f S ayl LlAK2G Aaz2fl dAz2yé
a transaction commits that no updates since the snapshot conflict with any updates the transaction is

np

The Pyrrho BookMay 2015)

about to commit. It used to be claimed that this results in serialisable transactiomst does not.
Transactions are only serialisable if all of their activities (reads and writes) have effect as if there is no
concurrency, i.e. there is an ordering of the effective times of transactions such that the same results
are achieved.

The conmit time of a transaction is when its changes are written to durable media (not the time of
the commit request): for example as in Pyrrho by flugites to the transaction log. To ensure this
serialisability is valid we need to ensure that all of the rdsove have accessed, some of which we
may be about to change, still have the values found in the snapshot taken at the start of the
transaction.

Thus a first requirement at commit time of a transaction T is to ensure that none of this data has been
modified by other commits since the start of T. The set of read records and proposed physical changes
is checked against physical changes that other transactions have committed since the start of T. The
first part (the read records) is handled by a list of readstraints maintained by the local transaction.

For changes, the proposed physical records about to be written to disk are checked against those that
have been committed to the database since the start of T. For example if we are updating a value we
needto be sure that the table and record are still there, and the column still exists and has the right
type. These checks guarantee consistency of the database.

There are three further checks that are needed to guarantee data integrity. The DBMS will already
have checked for entity and referential integrity against the values it has in the snapshot, but at
commit time checks are needed against any relevant changes committed by other transactions. These
are (a) for primary and unique keys to check that a dapdi key has not been added since the start

of T, (b) to check that a key referenced by an inserted record has not been deleted since the start of T
and (c) to check that a key we are deleting is not referenced by a record that has been inserted since
the start of T.

Needless to say, as soon as we start to check the effects of other transactions, isolation is over, so
4dzOK OKSO1a Oly 2yfe 06S YIRS RdZNAy3I ¢Qa O2YYAGX
must be done before any other transaction can star commit. Pyrrho goes to a lot of trouble to

reduce the amount of processing needed to carry out these checks, but inevitably the cost of
performing the checks is linearly dependent on the number C of changes by T and also on the number

D of physical cinges by other transactions since the start of T. The cost R of read constraints in T is

a bit better than linear in the number of records read: R increases by 1 for each table all of whose
records are read, and for each specific record read. The totdl afoguaranteeing serialisability is
O(CD+IbgR).

Ly &a2YS ¢gleax 3IAPSYy (GKS O2YYAlGYSy Goptimal, addevey & F OG A 2
works well for distributed databases and transactions. It is not excessive, as the benchmarks in Lecture
1 show, but people are not used to paying for this level of serialisability.

There are alternative approaches. If the transaction contains only updates, SSI does guarantee
serialisability. If the correctness of reads is not an issue, they should be daker the transaction,

e.g. handled in a parallel connection. If a transaction dos require correct reads, and SSI is the best
F@FrAflrofS Ay | 5.a{xX (GNHzS &ASNAItAaloAtAGE OFyYy 0°
EFEé¢ d LT { KSrowsversiohingAtiizlalhdctifin can check these at commit time. But it

seems wrong to leave transaction safety to the client.

p@mNJ yal Os2y YI a0 SNA

The enforcement of full ACID requires that for each resource there should be a single transaction
mastea that enforces serialisability of transactions that access its data, and any process that needs to
know an upto-date value in the resource, or commit a change to this value, needs to be able to
communicate with that transaction master.

The Pyrrho BookMay 2015)

Many designers dirge systems dislike the notion of a single server playing such an important role.
There are two objections (a) it acts as a bottleneck at times of heavy traffic, (b) it represents a single
point of failure.

If the network is partitioned so that the traaction master is unreachable, then no updates should
occur. If the transaction master is permanently out of action, then the remaining network can elect a
new one, but it is not reasonable for two disconnected parts of the network to continue separately.

tF NGAGAZ2YAY3 | REGIOF&AS aK2NART 2yGrfteée o6F2N) SEI
between transaction masters. This can enable higher throughput, provided transactions that use data

from more than one partition are very rare, as even a smathber of distributed transactions can

cause serious delays. Transaction profiling can help to identify useful choices of partitions (e.g. see
Curino et al 2011). We return to consider distributed databases in Chapter 8.

Despite all the theory, and despitsome very welpublicised disasters, few business people accept
the need for a single transaction master for each database fragment, or the need to stop all
transactions if the network becomes patrtitioned.

pBApPShdb9¢ YR GNFXyal Osa2ya

It is rather imporant to understand that ADO.NET 2.0 introduced two parallel mechanisms of
operation, with different concurrency mechanisms.

f ¢KS 5FaGF{SG FYyR 5FdF!RIFILIWGISNI GeLlSa dzaSR | RA:
02y OdzNNBy 0@

1 ¢KS 56/ 2YYlIYR | YRASROILWEBERSNR EOHLIOA Y GrdZNNBy Oé o
Because only one DataReader can be open for a given database connection this all works in a fairly
natural way: the duration of locking is the length of time that the data reader is open. We can make
local changes to a DataSahd when we try to commit them to the database, ADO.NET makes a hew
transaction for us, and checks that the affected records are still the same as when we read them.

p B cSNEAZ2YAY 3
From April 2015, Pyrrho has a type of row versioning which this sectiopares with corresponding
FSIF GdzNBa iRy, L.yaRQaa {CNR a2F0Qa {v[{ SNBSNW

Pyrrho alwayssupplies a pseudocolumn in all base tables called CHECK. The value is a string that
includes the transaction log name, defining position and current offset ofrdae version. When
retrieved it refers to the version valid at the start of the transaction, but it can be used at any time
subsequently (inside or outside the transaction) to see if the row has been updated by this or any
other transaction (this is the dyviolation of transaction isolation in Pyrrho).

There is a method in the PyrrhoConnect subclass of IDbConnection for verifying a check string:

bool Check(string ch) Check to see if a given CHECK pseudocolumn value is still curre
the row has not ken modified by a later transaction.

Unlike other DBMShe check cookie is just a note of a transactiog position and so is persistent.

Ly L. aQdhe égclirderiR{ corirol mode can be set per table using the ALTER TABLE t SET
OPTIMISTIC/PESSEMISTIC statement, or for all tables using the General.Pessimistic setting in solid.ini.
With the default optimistic setting:

MM OK aYS UKIFIG GKS &SNBISNI NBI
GSNEAZ2Y yHBOZNR2F yRK&G2NBa a
H® KSYy AlG Aa aYS G2 O2YYAU GUKS GN}yal Oes2ys UGKS
)

u
GKFG AdG NBFIR F3FAyad GKS SSNBAZ2Y ydzYoSNI 2F Gf

Ra I NBO2NR G2
K O2Lk F2NfI 4

The Pyrrho BookMay 2015)

1T LT GKS JSNAAZY ydZY@SHF SI 8B 46KOKEYESR WKS
Oty @oNARGS (GKS dzLRIFGSR @It dzS o

9 LT GKS 2NAIAYylIffe NBFR @lFftdzS yR GKS O
a2YS2yS KIFa OKIFIy3aSR (4KS RIGF aixyO0S AG o1
208 (S ¢Kdza (KS aeaidiSy RAaAOFNRa GKS @S
NBldz2Nya Iy SNNRN YSaal3asSo

T ¢KS adSL) 2F OKSOlAy3a GKS @GSNAA2Y ydzyo SNEH
LISNF2NXYSR i GKS O2YYAlG WSS 20¥y2zl\mxafy325|st|)\m<laa
0S| NI & gt ARIFa2Yy0® Ly a2t AR5. NI &
ODSYSNIf d¢NFyal Osa2y 9l NI éil-t)\muéréééum

Each time a record is updated, the version number is updated as well.

Each user's transaction sees the databasi &8s at the time that the transaction started. This way

the data that each user sees is consistent throughout the transaction, and users are able to

concurrently access the databadeven though the optimistic concurrency control mechanism is
sometimes alled optimistic locking, it is not a true locking schentke system does not place any

locks when optimistic concurrency control is used. The term locking is used because optimistic

concurrency control serves the same purpose as pessimistic locking gnging overlapping

updates.When you use optimistic locking, you do not find out that there is a conflict until just before
you write the updated data. In pessimistic locking, you find out there is a conflict as soon as you try to

read the data.

To use a analogy with banks, pessimistic locking is like having a guard at the bank door who checks
your account number when you try to enter; if someone else (a spouse, or a merchant to whom you
wrote a check) is already in the bank accessing your accountythecannot enter until that other
person finishes her transaction and leaves. Optimistic locking, on the other hand, allows you to walk

into the bank at any time and try

to do your business, but at the risk that as you are walking out the

door the bank gual will tell you that your transaction conflicted with someone else's and you will
have to go back and do the transaction again.

With pessimistic locking, the first

user to request a lock, gets it. Once you have the lock, no other user

or connection can aride your lock.

(v {SNBSND3

2 LJGA YA

AGA0 02y OdsNNB Yy OeWriziaSécordd S NA A 2

in a table or index is updated, the new record is stamped with the transaction sequence_number of
the transaction that is doing the upta The previous version of the record is stored in the version
store, and the new record contains a pointer to the old record in the version store. Old records in the
version store may contain pointers to even older versions. All the old versions ofieuzarrecord

are chained in a linked list, and SQL Server may need to follow several pointers in a list to reach the
right version. Version records need to be kept in the version store only as long as there are there are
operations that might require tha.

pa@NI yal Osa2y

t N2UE Ay 3

In the current literature, transaction profiling is usually associated with detection of security breaches:
a transaction that does not fit any known business process deserves investigation. This paper presents

a new model forlightweight transaction profiling that also focuses on traffic optimisation, by
considering failed transactions also. Where transactions repeatedly fail because -tifrleckit or
transaction conflict, there are two options: redesign of the task, or sclimglit to take place during

maintenance periods. In experiments the mechanisms proposed here added less than 10% to DBMS
memory usage and had no appreciable effect on transaction timings. These mechanisms can bring
immediate benefits in database securdyd can assist in improvements to access control and role

management for a live system.

ny

The Pyrrho BookMay 2015)

The creation of transaction profiles is very important for proactive security monitoring, and for
database traffic management. A poorly designed database, or caggdptisation design, can lead to
transactions that lock more data than they need to, and thus degrade performance of the whole
system. Where transactions repeatedly fail because offime&out or transaction conflict, there are

two options: redesign of thtask, or scheduling it to take place during maintenance periods.

Pyrrho includes a mechanism for diagnosing incidents where database transactions fail. Generally, a
transactionT has a read a settRf data items and is committing changes to a setoMlata items,

and typically these sets overlap. With optimistic concurrency control, transactions are unaware of
concurrent transactions but a transaction commit will fail if another transaction has committed a
change to any data item itfRWr. To analysewugh failures, Pyrrho assists with aggregating failures

of this type, using a supplemental log that records the read and write details for each transaction along
with the success or failure of the transaction.

pdyNRPUf Ay3 AYLI SYSYyill a2y

If profiling is tuned on for a databasd’yrrho maintains a transaction profile, which is persisted not

in the database itself, butin an XML file: this is because it is a record not of the entire database activity,
but just the periods for which profiling is enabled. Riexf can be deleted without harming the
database in any way.

There is a convenience utility called ProfileViewer which displays the profile in a readabléctiee
F2NXYIFGP ¢KS LINPFAES OFy SAGKSNI 60S dF SANIKSREI RESNRLY
from the XML file (in which case ProfileViewer expects to find the xml file in its working folder).

(ot ————————— |]|
Dattoce B orsocion 0 Tobls 1 ocured 10 Fid 0
PTest =) Table MEMBERS Recs 1 Dels 0 Spec 0 Blocked False
Record Oceurs 1[10.MNAME CREDIT]
Profile Trans=15 Fails=12

Transaction 1 Tables 1 Occumed 15 Failed 12

Load Fetch B - Patam

able MEMBERS Recs ~ Dels 0 Spec 0 Blocked True
‘... Record Oceurs ~ [CREDIT]
- Transactions

=) Profile Trans=44 Fails=0
£ Pattem
. & Transaction 4 Tables 1Occuned 44 Failed 0
able MEMBERS Recs ~ Dels 0 Spec 2 Blocked False

10/05/2010 13:43:58

159 transactions

N ns
— Transaction 4 Tables 1 Occumed 24 Failed 0

| [Table MEMBERS Recs 1 Dels 0 Spec 2 Blocked False
£ Transaction 8 Tables 1 Occured 20 Failed 0

- Table MEMBERS Recs 2 Dels 0 Spec 2 Blocked False

Profiling has a negligible effect on performance and memory use. Profiling can be enabled for all
databases, or in the configuration of intual databases.

The purpose of gathering or storing profile information is to understand and monitor the causes of
transaction conflicts. Performance tuning and database design should seek to minimise failed
transactions during normal operation. It ievitable hat an unusual opation, such as changing the
schema or making an update affecting all rows of a table, will be hard to commit during heavy traffic,
because a conflicting transaction will probably occur in the meantime.

When profiling is turnd off or on for a database callethme profiling information is destructively
saved as or if available loaded from an XML document with naameexml. Thus a database
administrator can carefully take a database offline by throttling, and then turning rofilipg to
record a snapshot before shutting down a server, and in this way a full profile of normal operations

n o

The Pyrrho BookMay 2015)

can be maintained. This level of completeness for profile information will not be achieved if the
database server is simply Killed.

If profiling is enabled, any failed transaction will report its profile. The system profile table will contain
the number of successful and failed transactions recorded for this profile: the number of successful
transactions will be based on the entire history ofetllatabase, while the number of failed
transactions recorded will be based on the available information from recorded periods of full profiling
(or since the time profiling was enabled for the server).

If profiling is turned on, a set of system tables (Fe$, Profile$ReadConstraint, Profile$Record,
Profile$RecordColumn, and Profile$Table) enable inspection of theimealstate of the profile
information, always excluding any information about transactions in progress. As with other system
tables thesdables are not persisted but instrument the running serbgrexposing irmemory data
structures as if they were database tahl@$e profile viewer described in sectibr8 obtains profile
information from these tables or from the XML document, and alsmugs profiles with similar
pattern (for example where everything is the same apart from the number of affected rows).

pPd t ENNK25. a{yY alFS 2LlYAaaO GNIyal Os2y3

The Distributed Databasand Partitionedutorial in Appendices 4 and 5 demonstrate hBwrrhouses

three phase commit for distributed transactions. At this point in this book it seems a good point to
state once again that while Pyrrho uses optimistic concurrency control, it is totally transaefienf

you are using explicit transactions you can use the system "Log$" table to view the proposed changes
for the current transaction. Each connectiorliluave its own, and it is easy to see the they are isolated:
the only entries with known positions are the ones that predated the start of the transaction.

@ Command Prompt - pyrrhocmd h2 - 0O X

d h2

Accordingly the transaction commit protocol is in 4 or 5 phases controlled by locks on thactians
log file (which in Pyrrho is the durable version of the database): 1. Verify the transaction does not

pn

http://pyrrhodb.uws.ac.uk/DistributedDatabase.docx
http://3.bp.blogspot.com/-ss_kSREnWGc/VREs25OTMCI/AAAAAAAAAJ8/f2RYAqetJq0/s1600/TransLog1.png

The Pyrrho BookMay 2015)

conflict with anything written since the start of the transaction. 1.5 Lock the database and repeat this
test. 2. Prepare the binary package towstten. 3. Write it to the disk file and unlock the database.

4. Now discard the local transaction and allow the client to see the database as it now is.
If multiple servers or databas@se active then step 3 here requires thrphase commit during which

time the proposed changes are written to temporary files. If all is well, these temporargdilast

need to beread, and can be removed once all participants have acknowledged the commit request.

This section examines the verifia step that occurs during the first stage of Commit. For each
physical record P that has been added to the database file since the start of the local transaction T,
we

91 check for conflict between P and T: conflict occurs if P alters or drops soméhdafh has
accessed, or otherwise makes T impossible to commit

T instal PinT.

Let D be the state of the database at the start of T. At the conclusion of Commitl, T has installed all of
the P records, following its own physical records P': T=DP'P. Butpif commits, its physical records

P' will follow all the P records in the database file. The database resulting from Commit3 will have all
P' installed after all P, ie. D'=DPP'. Part of the job of the verification step in Commitl is to ensure that
thesetwo states are equivalent: see section 4.2.2.

Note that both P and P' are sequences of physical recordspP&eh&tc.

The verification step performed by Pyrrho goes one stage beyond this requirement, by considering
what data T took into account in propimg its changes P'. We do this by considering instead the set
P" of operations that are read constraints C' or proposed physicals P' of T. We now require that DP"P
= DPP".

The entries in C' are called ReadConstraints (this is a level 4 class), ani$ theeeper base table
accessed during T (see section 3.8.1). The ReadConstraint records:

9 The local transaction T
9 The table concerned
1 The constraint: CheckUpdate or its subclasses CheckSpecific, BlockUpdate

CheckUpdate records a list of columns that accgssehe transaction. CheckSpecific also records a
set of specific records that have been accessed in the transaction. If all records have been accessed
(explicitly or implicitly by means of aggregation or join), then BlockUpdate is used instead.

ReadConsaints are applied during query processing by code in the From class.
The ReadConstraint will conflict with an update or deletion to a record R in the table concerned if
9 the constraint is a BlockUpdate or

1 the constraint is a CheckSpecific and R is onbeo§pecific rows listed.

This test is applied by LocalTransaction.check(Physical p) which is called from Commit1.

The main entity integrity mechanism is contained in LocalTransaction. However, a final check needs
to be made at transactionommit in case a concurrent transaction has done something that violates
SydAride AydSaINRGed LF 423 GKS SNNBN O2yRAGAZY

P M

0 KI

The Pyrrho BookMay 2015)

entity integrity message, since there is no way that the transaction deaNe detected and avoided
the problem.

Concurrency control for entity integrity constraints are handled by IndexConstraint (level 2). It is done
at level 2 for speed during transaction commit, and consists of a linked list of the following data, which
is gored in (a norpersisted field of) the new Record

1
T
1
1

The set of key columns
The table (defpos)
The new key as a linked list of values

A pointer to the next IndexConstraint.

During LocalTransaction.AddRecord and LocalTransaction.UpdateRecord a newreatlg ig this
list for the record for each uniqueness or primary key constraint in the record.

When the Recordsichecked against other records and discussed tigst|ist is tested for conflict.

The main referential integrity mechem is contained in LocalTransaction. However, a final check

needs to be made at transaction commit in case a concurrent transaction has done something that
A2t G0Sa NBFSNBYGAIT AyGSaNAdGed LT &zrahedtts SNNEBN
the usual referential integrity message, since there is no way that the transaction could have detected

and avoided the problem.

Concurrency control for referential constraints for Delete records are handled by
ReferenceDeletionConstraint (leh2). It is done at level 2 for speed during transaction commit, and
consists of a linked list of the following data, which is stored in (apewsisted field of) the Delete

record

T
)l
1
)l

The set of key columns in the referencing table
The defining position ahe referencing table (refingtable)
The deleted key as a linked list of values

A pointer to the next ReferenceDeletionConstraint.

Concurrency control for referential constraints foinsertions records are handled by
ReferencelnsertionConstraint (level R)is done at level 2 for speed during transaction commit, and
consists of a linked list of the following data, which is stored in (apswsisted field of) the Record

record

1

)l
)l
il

The set of key columns in the referenced table
The defining position of the refenced table (reftable)
The new key as a linked list of values

A pointer to the next ReferencelnsertionConstraint.

For distributed databases all the above checking information needs to be sent to the transaction
master for verification.

The Pyrrho BookMay 2015)

/| KISIN¥ cw2af SR .{IS OdzNR (i &

In any organisation, the allocation of responsibilities to individuals varies over time, and so it makes
sense to assign permissions not to individual users, but to roles. Roles are associated with business
processes, hot job descriptions: aoge individual might be assigned a number of roles in different
business processes such as validate travel expenses, assign salesman to region, publish telephone
directory. It is a good idea to have a number of roles: if there are none than there iaceahility

and no security: anyone can do anything and nobody will ever know why. It is also a good idea that
every operation on a database declares the role being exercised, so that the action can be checked for
validity. The principles of transparencycaaccountability mean that people need to explain what they

are doingc it is not enough simply to say | am doing this because | can.

Security analysis begins with an account of who is allowed to enter or modify data and on what basis,
and who is allowedd read that data. Permissions can be granted to applications as well as to users,
but in that case the application takes on the responsibility for allowing different individuals to carry
out different operations, and for best results it is these that skdooé recorded in the transaction
record. For a particular database and application, it will be clear at any stage what role is being
exercised. The same considerations apply to stored procedures and to methods of structured types.

From this discussion wes that database operations should be granted to roles, and roles should be
granted to users. In SQL there is also the possibility of allowing users to administer a role, and allowing
a role to grant privileges to other roles.

For an example, suppose weuveaa warehouse containing products, being ordered by customers. We

can imagine that the list of products is maintained by a Manager role, that a Clerk can add a new
customer or take a new order, that a Storeman can manually alter stock levels, thaterydeén can

record that a delivery has been done, etc. We expect none of this information is confidential, except
that customer address information is only visible to the Clerk and Deliveryman. Individuals might be
allowed to adopt more than one role, butshould always be clear what role they are currently in. So

AT W2KYy GKS /fESN] Aa GSYLERNINREeE Fff26SR (2 R?2
to look back to see what he did in that role.

For example, suppose a small sportingbc{such as squash or tennis) wishes to allow members to
record their matches for ranking purposes:

Members: (id int primary key, firsthame char)

Played: (id int primary key, winner int references members, loser int
references members, agreed boolean)

Forsimplicity we give everyone select access to both these tables.
Grant select on members to public
Grant select on played to public

Although Pyrrho records which user makes changes, it will save time if users are not allowed to make
arbitrary changes to th@layed table. Instead we will have procedure Claim(won,beat) and Agree(id),
so that the Agree procedure is effective only when executed by the loser. With some simple
assumptions on user names, the two procedures could be as simple as:

Create procedure cl aim(won int,beat int)

insert into played(winner,loser) values(claim.won,claim.beat)

The Pyrrho BookMay 2015)

Create procedure agree(p int)
update played set agreed=true
where winner=agree.p and

loser in (select m.id from members m where current_user like
('%'||firstname)

We want all members of the club to be able to execute these procedures. We could simply grant
execute on these procedures to public. However, it is better practice to grant these permissions
instead to a role (saynembergames) and allow any member tose this role:

Create role membergames 'Matches between members for ranking purposes'
Grant execute on procedure claim(int,int) to role membergames

Grant execute on procedure agree(int) to role membergames

Grant membergames to public

This example could bextended by considering the actual use made of the Played table in calculating
the current rankings, etc.

COMII AOFa2y 2NJ5.a{ o0lFlaSR aSOdzNRAGe&

In many commercial environments, DBMS security is a neglected topic. This is partially excusable if
the only wa to use a database is through a set of applications whose use is subject to strong
authentication and authorisation mechanisms, but it should be recognised that a good security
structure in the databases can lead to greatly enhanced forensic opportuniiesse will be lost if

the tables in a database are all public, or (worse) if the tables all belong to the database administrator
and the database administrator identity is used by all applications.

In many commercial DBMS, it is very hard to discovernvade a particular change to the database,

or when, or what value was there before the change occurred. Although transaction logs can be
maintained, they are often discarded after a time. It is better practice to retain the logs, or to adopt a

DBMS desigh dzOK & t @ NNK2Qa ¢gKSNB GKS GNIyalOldAzy 23

On the other hand, the user of DBMy&sed security makes a database much less portable. It is no

longer a simple matter of copying the database tables to another machine or dosiace the
authorisation identifiers will be different. For example, if a student develops a database at home, there

is an extra step required to ensure that the database is usable in the workplace environment, namely

to grant all privilegesonthebase® f Sa (G2 GKS a0dzZRSy(dQa dzaSNJ ARSy (A

grant all privileges on players to "DOMAlINer"

or to PUBLIC of course.

CHR2 NBYaArAO Ay@Sasdalaz2y 2F | RIEOGFIO6FAS
Pyrrho supports two kinds of investigation of a database.

First, full log tables are aintained. These are accessible to the current owner of the database, or to
an investigator specified in the server configuration file. The log files allow tracing back to discover the
full history of any object: when it was created, what changes to iewseade, and when it was dropped.

In each case, full transaction details are recorded: user, role and timestamp. Since objects can be
renamed, logs use numeric identifiers to refer to objects in the database. Full details of the log tables
are given in chagr 8. Using these tables it is always possible to obtain details of when and by whom
entries were made in the database.

pn

The Pyrrho BookMay 2015)

Secondly, Pyrrho supports a sort of time travel, in which a Stop time can be specified in the connection
string (see chapter 6). Themoection then allows the database to be seen exactly as it was at that
time, and provided the operating system can restore the right user identities and application versions,
these can be used to inspect the database, which is generally easier than waitkirtige log files. In
complex cases, a detailed investigation of the database as it was at a former time may be necessary
to discover just how a particular user and role could have made a particular change to the database
(since the change might have bemade indirectly, for example by a trigger or a stored procedure).

One extension to SQL2011 syntax which assists with forensic investigation is the-faad®OWS(n)

GKSNB y Aa GKS at2aé | G0GNROdzi S AppandixiKFSr examplef S 02 v
suppose we want a complete history of all insert, update and delete operations on table BOOK. Then
lookup BOOK in Sys$Table:

select "Pos" from "Sys$Table" where "Name"='BOOK'

If this yields 274, then the required history is

select * from ravs(274)

These can of course be combined:

select * from rows((select "Pos" from "Sys$Table" where "Name"="BOOK"))

The second set of parentheses is needed in SQL2011 here to force a scalar subquery.

238520887

123.-85-280087 ti4: icholas Nlcklehy
123-85,2087 zi4: .Nnotlomo
15831 In¢31t 537 .23/35/23@7 :3@: iHeart of Darkness
1634 Update | 485 H .Dumhey and Son
'EE?'DeleteI4BB 3.-85.2087 H

The Log$ table gives a seraadable account of all traxactions:

pp

The Pyrrho BookMay 2015)

BN Command Prompt - PyrrthoCm = S

(] ele F'o e 0 0 -

=
=
=

=
= =
= =

|

=]

=
=
=

|

=1]
=
=

=
5
0 = S
=
=
=

=

0} -

4 4

The system log refers to columns and tables by their uniquely identifying number rather than by name.

Note also that the Update record shows which field(s) have been modified.

azald 2F GKS {eadSy FyR 23 idivesthe defifing gStion of tke2 t dzY' y
relevant entry.

There is a pseudoolumn in every table called POSITION which allows the defining position of current
records in the database to be retrieved using ordinary queries, e.g. in the above example

select book.psition from book where title="Dombey and Son'

would give 405. This value is in fact the defining position of the first record with the same primary key
4 Ww52Y0Se FYR {2yQ3 NIGKSNJ GKIy GKS LXFOS 6 KSNJ
find other relevant log entries for this record.

Command Prompt - PyrrhoCmd |ﬂ|&J

_____________ E]

ID expected at =
SQL> select book.position,auth,.title from book where title=’Dombey and Son’

{BOOK.POSITION!A

~|
| M 4

An authorisation identifier is like a user. Users are defined in SQL by granting them privileges. It is
assumed that there is some implementation defined way of associating a particular session with an
authorisation identifier. For example in SQL server, users are defined within SQL server or by means

of Windows integrated authentication. In Pyrrho the user identity is taken from Windows in form
GR2WVUZASNE 62NJ Ay [AydzE ¥F NP othé 8h8ngdd hyi yeSsdrii.A 2y & G NR y

SQL recognises a predefined authorization identifier _SYSTEM . Apart from _SYSTEM, any
authorisation identifier can be a granted privileges or roles.

pcC

The Pyrrho BookMay 2015)

c ®oNA A f S3TSa

The SQL standard says thaprivilege authorises a given cagory of action to be performed by a
specified authorisation identifier on a specified object, such as a table, a column, a domain, a user
defined type, or a routine. The actions that can be specified are insert, update, delete, select,
references, usageinder, trigger and execute. Insert, update, select and references can be for whole
tables or views, or can be limited to a specified set of columns. Usage privileges apply to domains or
userdefined types. Under privileges apply to structured types, anecete privileges apply to
routines.

The security model in the SQL standard is based on the GRANT and REVOKE statement. There are two
versions of each, for granting or revoking privileges to grantees and for granting or revoking roles to
grantees.

A grantalte privilege is a privilege that may be granted by a grant privilege statement: it can specify
WITH GRANT OPTION in which case the grantee can grant it to others.

Every database object has an owner. This is initially set to the creator of the objectSHSTENS
considered to have granted the owner all privileges when the object is cre@tedreation a database

has a default role with the same name as the database, and the owner of the database can use this
role to create the starting set of objectsrfthe database.

The normal way for ownership of a Pyrrho database to be changed is for the database owner to invoke
the Pyrrhospecific GRANT OWNER statement. This is implemented as part of the normal database
service, and it is good practice to ensurettbaners of database objects are user identities that are

still available in the operating system.

cavizf Sa

A role can be created by the CREATE ROLE statement: initially the owner has administrative rights on
the role (granted by _SYSTEM). The grantsttement is used to allow this role to authorisation
idnetifiers, and if WITH ADMIN OPTION the grantee may grant it to others.

Each role is an authorisation identifier. SQL recognises a special role called PUBLIC which is associated
with any user and idie owner of standard domains.

In the SQL standard an authorisation identifier is permitted any action granted to it directly or through
a role. An authorisation identifier is enabled if it is the current user identifier, the current role name,
or the nameof a role that is applicable for the current role. A privilegeugentif it is applicable for

an enabled authorisation identifier.

In Pyrrho DBMS only one role is current at any point in a session. A user (authorisation identifier) must
choose a sirg role as the session role, and can modify this within the session using the SET ROLE
statement to another role they have been granted. Thus in Pyrrho, the only enabled authorisation
identifiers are the current user name and the current role.

c @TK S aNPIf G5

During query execution, any invoked operation is checked to see that the current role has been
authorised to carry out the operation: at the start of the analysis the current role is set to the session

role. When the operation involves transferriogntrol to a routine, and the current role is permitted

G2 SESOdziS G(KS NRdAziAySs G(KS OdNNByid NRtS 0S502YS:
restored on exit from the routine.

When the transaction is committed, all of the modificatiorswf 6S NBO2NRSR | IF Ayal
id and the session role. When reviewing such a record, it is important to remember that the changes

may have been made by a routine operating with different permissions.

The Pyrrho BookMay 2015)

In Pyrrho, these permissions affect theetadata that can be viewed in a session, e.g. default values,
view definitions and routine definitions. If these are examined by the current user (using the system
tables) the SQL text may contain identifiers that have a different name or are not avadatbie
current user and role. Pyrrho displays the identifiers that are appropriate to the current user and role
or <hidden> if this data is not viewable from the current user and role.

cawS P21 Ay3a LINAGAf STSa

In the SQL standard it is often a complex raatb discover by what route a particular user is entitled
to take a particular action. There are many parts of the SQL standard where a schema change results
in a cascade of grants of permissions. Unfortunately, it then becomes very unclear what effect
revoking a privilege from a user or role will have, as a simple statement of the form

NE@21S Fftf LINAJACHBRE 2y ¢ FTNRY a{&adSy
may allow Fred to retain privileges that he has acquired through some complex chain of grants.

Some DBMS regard this positias unsatisfactory, and in Pyrrho the semantics of grant and revoke
operate somewhat differently from the standard. The effect is that a revoke statement of the above
form will actually leave Fred with no privileges on the specified object (and any comiidue
privileges are also removed, in a cascade). The derogation from the SQL standard in this respect is
extensively documented in the Pyrrho manual.

Apart from the owner privilege (which can be held by just one user), granting privileges directly to
users is deprecated. It is recommended to grant roles to users instead. Similarly, attempting to create
a hierarchy of roles is also deprecated, and in Pyrrho the grant of role A to role B has the effect only
of granting role A to all users authorised to uséerB at the time of the grant: it does not create a
permanent relationship between the roles; revoking a role from a role does nothing, and all roles are
in the root namespace. This behaviour appears to be a departure from SQL2011

Similarly, a grant girivileges does not create any permanent relationship between roles. For example,
granting Select on a Table implies granting select on all of the current columns. The grant can be
repeated later if new columns are added, or the new columns can be gra8tedlarly in Pyrrho,
access to a column can be revoked even though the role was previoaslggraccess to the whole

table.

Granting a role to a user is different: it means that the user is entitled to exercise the role, and any
privileges that the rolénas at the time of use.

CHISNAFEAYI LINAGAE SISa

The DBMS should provide one or more system tables to verify the current permissions on an object.
Ly te&NNK23 (0KA&a A& R2yS o0& (0UKS awz2fSbPt NAGAf S3S¢

py

The Pyrrho BookMay 2015)

Grantee {Privilege

iName H
1Owner |
1
1
1

iAUTHOR iLibrary iDelete. References,. GrantDelete, GrantReferenc
iLibraryi
=HUTHERh iLIBRARIAMiDelete,. References, GrantDelete, GrantReferenc
iLibraryi
i INTEGER iPUBLIC ilsage,. GrantUsage
{PUBLIC ¢
{ INTEGER ILIBRARIAN iUz age
{PUBLIC ¢
iDomains iCHAR iPUBLIC ilzage, GrantlUsage
{PUBLIC ¢
iDomains iCHAR iLIBRARIAM iUz age
{PUBLIC
iColumns {AUTHOR.ID iLibrary iSelect, Insert,. Update,. GrantSelect,. GrantInse
GrantUpdate iLibrary!
lumns {AUTHOR.ID LIBRARIAMiSelect, Insert,. Update,. GrantSelect. GrantInse
1t , GrantUpdate iLibraryi
iColumnsz {AUTHOR _MAME iLibrary iSelect, Insert,. Update,. GrantfSelect, Grantlnse
t,. Grantlpdate iLibraryi

As can be seen in the illustian, the fields in this system table are ObjectType, Name, Grantee,
Privilege and Owner. Note the different privileges associated with database objects (e.g. tables and
columns).

p

The Pyrrho BookMay 2015)

| KI LIW@MIBraySR Y2RSttAy3 yR t 831 08

In the last chapter we exained roles and security. The roles assigned to a user, and the permissions
assigned to the roles, control what a user is able to do. For the reasons outlined in the last chapter,
Pyrrho requires the user to exercise one role at a time. In this chaptexylere a major advantage

of this approach, in that schema changes made by a user in Pyrrho are local to the role, so that each
role may have a different data model. We will see that this allows data analytics to operate
conveniently, and in real time, dhe physical database.

On Windows systems, the user identity is obtained from Windows, and the default role has the same
name as the database. The user can specify another role in the connection string, or specified by the
SET ROLE statement, provided thie has been assigned to them. Pyrrho allows database objects to
be renamed or altered by holders of the appropriate permissions: but such renaming and alteration
applies to the current role, so that a database object can have different names in diffetes.

By default all roles in a Pyrrho database have a default data model based on the base tables, their
columns, and using foreign keys as navigable properties. Composite keys use the list notation for
values e.g. (3,4) and the name is the reserveddi®y, which can be suffixed by the property name

of the key component. The default data model can be modified on aglerbasis to provide more
userfriendly entity and column names, and udeendly descriptions of these entities and properties.
Tabks and columns can be flagged as entities and attributes as desired.

For example, roles could be defined for users in different countries, using entity names, property
names and descriptions appropriate to the language of the country, giving accesdligeldcalumns

or views. The localisation of columns is facilitated by the Pysgezific UPDATE clause for generated
columns which can perform lookups or casts behind the scenes. These defined views or generated
columns could even have specific data typageting specific roles, since they impose no overhead
unless they are explicitly used.

Roles that are granted usage of an object will not see any subsequent name changes applied in the
parent role, but the role administrator can define new names. Stgnextedures, view definitions,

ISYSNI GA2Yy Nz S&a SGO dzaS G(GKS RSTFAYSNRE LISNXAAaa
RATFSNBYG NRfSa GKIG dzaS GKSY 202S00a ¢gAatt oS
embedded code refersto objgca Ayl O0SaaAotS G2 (GKS @GAS6SNE (GKS

O2RSUV¢®

Apart from object names, only the owner of an object can modify objects (ALTER). This includes
changes to object constraints and triggers, and inevitably such modificationdisraipt the use of

the object by other roles, procedures etc. References in code in other roles can introduce restrictions
on dropping of objects, but as usual, cascades override restrictions, and in Pyrrho, revoking privileges
always causes a cascadea@ing select on a table must include at least one notnull column. Granting
insert privileges for a role must include any notnull columns that do not have default values, and
cannot include generated columns.

Wewalk through a simple databassxample, about a library database. Either start up the PyrrhoSQL
client as shown,

—_— NS

The Pyrrho BookMay 2015)

g A3 [T

If you are using the PyrrhoSQL client shown, give the Database name as Library and click Connect. If
you are using an ordinary command prompt give the command

pyrrhocmd Library

We begin by controlling access to the database, and then gidstiild a simple database of books
and authors.

NE@21S G[AONINEBE FNRBY Llzf AO

create table author(id int primary key,name char not null)

create table book(id int primary ketitle char not null, aid int references author)
insert into author values(1, Dickens'),(2,'Conrad")

insert into book values(10,'Lord Jim',2),(11,'Nicholas Nickleby',1)

table book

[ty o2y

Heer b dar] 11 Dtk (Lizumry

erpate okl ppbhes] sl w permaey ey raeme chae =ol reall

erpater able bkl el prevarp bey S8e chee rod gl e releere e st
1mser] ivhy guther b (1 Tickern] 13 Comead)

el pvda bk saler D0 Lo ey J10LL Hehedes Hebelby' 1)

Fabde b

http://4.bp.blogspot.com/-4mzaEYnuRLg/TllDbo5-T_I/AAAAAAAAACc/ZWFdrY3ZVgs/s1600/pic1.png
http://1.bp.blogspot.com/-YCaHGvUHVM4/TllDsqXrKSI/AAAAAAAAACk/zOk6hOdsnbM/s1600/pic2.png

The Pyrrho BookMay 2015)

This looks okay to a database specialist but the Librarian is notimpregsel S ¢l yia GKS | dzi
in the book table: after feebly trying to explain about joins, | provide a special generated column in
this table using the standard SQL2008 syntax:

alter table book add aname char generated always as (select name from autVteere a.id=aid)

This pleases him a bit but he wants more reafteendly names and to hide these numeric columns.
So | add a new role for the Librarian, and allow Fred the admin option so he can define his preferred
column headings:

create role libra@n
grant all privileges on author to librarian
grant all privileges on book to librarian

grant librarian to "COMP1005Bred" with admin option

Al rolE B
Oranl M g S P T B
RN M e Ferde 12 hPadd

orant Ebauran to “TORE " with sdmia opta

(A generation rule in SQL20iLnot allowed to contain a query expression. Otherwise there are no
Pyrrho extesions here.)

Fred can now log in to the system with his Librarian ndléh the PyrrhoSQL client shown below, we
make sure Fred login with the LIBRARIAN role selected from theddrap. If he uses the command
line, then after starting with pyrrhocmd Ly, he needs

http://2.bp.blogspot.com/-jAFCxthVkpg/TllD4T55KKI/AAAAAAAAACs/MLSvN2fXHtE/s1600/pic3.png
http://3.bp.blogspot.com/-T8rFA4GKC4Y/TllECvZNPZI/AAAAAAAAAC0/52MMQVct3HI/s1600/pic4.png

The Pyrrho BookMay 2015)

set role librarian

2NJ KS 42y ®lédedidesSto r¥ndraefsobne columns (this is a Pyrrho extension), define a new
column called Availability, and to create a role for his readers with a simpler table structure:

alter table book alter aid¢o "Authorld"

alter table book alter aname to "Author"

alter table book alter title to "Title"

alter table book add "Availability" boolean default true
select "Title","Author","Availability" from book

{orrerhar

Hai batadbeint fori HMIY Detsbmas Lbwary

alpe laindn ook ather e b Ruthorkd”
ales LpSde Dl Bl by arvieap I daplEga

alird Lalmde: bevai b LT Do Tidhe”

alims inizie ook edd “Arsdsbelics” boofasn delwdi ires
whmi iy Aries” “Frvadebaley” e boch

Tide Aoz Bambbidiy
LEdl Coaaimi T

Pcholn Helidyy Lschbom (e ¥

create role reader

grant select("Title","Author"," Avigability" on book to reader

fgn 11 Cuwhies Lknasy

it et Tore” "s thad” "eoalbidiny] oo batee 3 re e

¢tKS 2yteée O2ftdzvya GKS wSIFRSNI OFy &a4SS INB (G(KS 2ySia
see these:

http://3.bp.blogspot.com/-O5SLxVhK0V4/TllEOjZ5sFI/AAAAAAAAAC8/PXg-Z5D80JY/s1600/pic5.png
http://4.bp.blogspot.com/-vsy8r7n35uM/TllEWAk4FKI/AAAAAAAAADE/FkRNJKjSTYk/s1600/pic6.png

The Pyrrho BookMay 2015)

| {orreber
Hai baalburn Port B3 Oetabaa Libwary

iade baak

Fascholen ey Lwkorn True T

Note that the Author data comes from a table that is otherwise inaccessible to the Reader, because

the generatiyy NXzf S dzaSa GRSTFAYSNRA NRIKGaAE D

b2¢g GKAA Aad K2g (GKAy3Ia aidlyR® ¢KS RIGFEolFAS 2062SC

changed:
1] yrrbas 50 e

g 11 Cuwbues LEasy

1D TITRE ML AMARE
10 Ll b gt |

11 PMecholgy Feckelbsy 1 | Liera =

From the Librarian role we have:

http://2.bp.blogspot.com/-UH0bnMhFhcQ/TllEhmVgE2I/AAAAAAAAADM/fcRwNEUvAVE/s1600/pic7.png
http://4.bp.blogspot.com/-pOLfzpJbl1k/TllEx6yd2DI/AAAAAAAAADU/CTwng6ksyIM/s1600/pic8.png

The Pyrrho BookMay 2015)

1] b S0 e

fan M1 Cowbues LEmasy = Liwwwl| Ros e | LERARLSH

10 Irds farhadd Arthor sadeieiny ©

10 Lo b o Corind Trus

11 Pl Pezhelibey) 1 eben e

and as we have seen the Reader does not see the numeric fields.

TAM G YAKEBKF yYAAY 62N &

The database creator has set up the following objects in the Library database: tables

' ¢l hwolL5Xb!'a90 YR .hhYOL5X¢CLE¢[93! L5Z!b!la90vo®d L
these objects as owned by the default database role, and tHeLIRC) standard types that have been

used: INTEGER and CHAR as required for these tables, and the BOOLEAN standard type that the
librarian used for his new Availability column.

Hoar booalhoad Bl 313 Comduee Ly

b "Rk ObRct”

Perg Type Hare Bt Chatgmal Deivipmas b Dwdes
BE Tabdm BUTHOS razeced Library
e Dwevass INTEREE e FURLE
10, Lperaers L HEN e FUEK
118 Codisans T L | Libamey

15 Colrees HERIE repnps P Lekrmy
INT Tabks BOOE v] Libiasy
0T Cohrers T repos el (BT
=1 Cohurere TITLE izt Likrasy
ITT Cahwess BN e | L=y
D Cohurern AN oz Litrasy
BN Dwwvaane S EAM vrige FIRLK -

http://4.bp.blogspot.com/-s0JWvZZsdmU/TllFBz1FxAI/AAAAAAAAADc/AS2gCm3M0iI/s1600/pic9.png
http://4.bp.blogspot.com/-zRJR1A-AkNc/Tlpe9VAKmMI/AAAAAAAAADk/ozBc-uO9fmI/s1600/pic10.png

The Pyrrho BookMay 2015)

In this table we can also see that database objects can have othebaskxl netadata such as an
output flag (this can be Entity or Attribute as we will see later), a hureadable Description, and an
Iri for Web metadata.

In the corresponding tables for the other roles, we see different metadata for different sets of objects.
The LIBRARIAN role renamed three of these objects, and defined the Availability column, and the
READER role contains just a few entries. As at the end of the last blog posting, the database owner
cannot use this role: it was created by the LIBRARIAN and hg@tnoeen made public. Fred can get

us the entries, and also make the role PUBLIC so anyone can use it.

LyadSIcIR 2F t221Ay3 G GKS w2fSpPhoa2S0OG GlroftsS F2NJ
GKS FTANRG A& F2NJ ow!AWOLNIbNEX i KISK Si KBASNTRR yTR2 NP 2aNd 94! [5L9. w

http://4.bp.blogspot.com/-p-KDApQq07o/TlpfazPQIBI/AAAAAAAAADs/6DDj8FmlNPI/s1600/pic11.png

