

The Pyrrho Book

Malcolm Crowe, University of the West of Scotland

www.pyrrhodb.com

ISBN: 978-1-903978-50-4

© 2015 University of the West of Scotland

Paisley: University of the West of Scotland, 2015

The Pyrrho Book (May 2015)

н

Contents

Chapter 1: Introduction to the Book .. 7

1.1 Download Pyrrho .. 8

1.2 The Pyrrho DBMS server ... 9

1.3 Starting the server ... 9

1.4 Database files .. 10

1.5 The client programs .. 10

1.6 Checking it works ... 10
The SQL> prompt .. 11

Chapter 2 Data Consistency, Transparency and Durability ... 14

2.1 Durability .. 15

2.2 Transparency ... 16

2.3 Consistency ... 16

2.4 Transactions .. 16

2.5 Application programming interfaces: ADO.NET ... 17

2.6 A first benchmark ... 18

2.7 Pyrrhoôs internal structure .. 19
Key features of Pyrrhoôs design .. 21

Chapter 3: Database Design .. 24

3.1 Constraints .. 24

Example 1 database ... 24

3.2 Pyrrhoôs logs and system tables .. 25

Example 2 C# application .. 26

3.4 The Java Library ... 28

3.5 SWI-Prolog ... 29

3.6 LINQ ... 30

3.7 Documents .. 31

First steps in Pyrrho ... 32

3.8 Pyrrho DBMS low level design .. 32

B-Trees .. 33
TreeInfo ... 34
SlotEnumerator<K,V> ... 34
ATree<K,V> Subclasses ... 35
Integer .. 35
Decimal .. 36
Character Data ... 36

The Pyrrho Book (May 2015)

о

Documents ... 36

SqlDataType .. 37

Chapter 4: Database Servers .. 39

4.1 Servers and services .. 39

4.2 TCP/IP services ... 39

4.3 The application protocol ... 40

4.4 The client library ... 40

4.5 Sessions ... 40

4.6 Database concurrency ... 41

4.7 Databases and the file system ... 41

4.8 Alternative architectures ... 42

Chapter 5 Locking vs Optimistic Transactions... 43

5.1 A scenario of transaction conflict ... 43

5.2 Transactions and Locking Protocols ... 44

5.3 Snapshot isolation ... 45

5.4 Transaction masters .. 46

5.5 ADO.NET and transactions .. 47

5.6 Versioning ... 47

5.7 Transaction Profiling .. 48

5.8 Profiling implementation .. 49

5.9 PyrrhoDBMS: safe optimistic transactions... 50

Transaction conflicts .. 51

Entity Integrity ... 51

Referential Integrity ... 52

Chapter 6: Role Based Security .. 53

Example ... 53

6.1 Application or DBMS based security ... 54

6.2 Forensic investigation of a database ... 54

6.3 Privileges .. 57

6.4 Roles ... 57

6.7 The role stack .. 57

6.8 Revoking privileges .. 58

6.9 Verifying privileges .. 58

Chapter 7: Role-based modelling and legacy data.. 60

An example .. 60

7.1 How the mechanism works ... 65

7.2 Legacy Data .. 69

7.3 The REST service ... 69

The Pyrrho Book (May 2015)

п

7.4 Data Visualisation and CSS .. 73

Chapter 8 ï Web semantics and OWL .. 74

8.1 URIs: first steps .. 74

8.2 OWL Types ... 75

8.3 IRI references and subtypes .. 76

8.4 Row and table subtypes .. 76

8.5 Provenance .. 77

8.6 Interationalisation ... 77
DateTime ... 77
Intervals ... 78

Localisation and collations .. 78

8.7 Using structured types .. 79

8.8 Stored Procedures and Methods ... 80

8.9 Condition handling statements .. 81
Examples .. 81

Chapter 9: Distribut ed Databases .. 83

9.1 Distributed transactions .. 83

9.2 Dynamic Configuration .. 84

9.3 Auto-partition algorithm for _ .. 85

9.4 Connection Management .. 85

9.5 Database Dependency ... 86

9.6 Cooperating Servers .. 87

9.7 Transaction implementation ... 87

Chapter 10: Partitioned Databases .. 89

10.1 Multiple database connections .. 89

10.2 Partitioning a database .. 90

10.3 Database Partitioning .. 91

10.4 Partition sequences ... 92

10.5 Managing Partitions .. 92

References ... 93

Appendix 1: Using ADO.NET for various databases ... 95

A1.1 MySQL .. 95

A1.2 Using SQL Server Compact Edition .. 98

A1.3 Using SqlServerCe with basic ADO.NET ... 99

A1.4 Using SQL Server Express .. 101

A1.5 Using PyrrhoDB ... 102

A1.6 Using Java with Pyrrho .. 105

The Pyrrho Book (May 2015)

р

A1.7 Using PHP with Pyrrho .. 106

Appendix 2: The Transactions mystery tour .. 107

Appendix 3: Roles and Security.. 119

A3.1: The sporting club .. 119

A3.2: A forensic investigation .. 120

A3.3: Some more PyrrhoDB stuff .. 120

Appendix 4: The Distributed Database Tutorial for Windows 122

A4.1 Start up the servers ... 122

A4.2 Create a sample database ... 123

A4.3 Configure a storage replica of the sample database ... 125

A4.4 Examining the configuration file ... 126

A4.5 What happened in step 3 .. 127

A4.6 A distributed transaction begins .. 134

A4.7 What happened in step 6 .. 143

A4.8 Creating the query service for D on C ... 144

A4.9 What happened in Step 7. .. 151

Appendix 5: Partitioned Database Tutorial .. 159

A5.1 Start up the servers ... 159

A5.2. Create a sample database on A ... 160

A5.3 Partition the table ... 162

A5.4 Examine the database and partition ... 163

A5.5 From A insert some more records in E .. 165

A5.6 On A, delete the partition ... 168

A5.7 Step 3 in detail ... 169

A5.8 Step 4 in detail ... 171

A5.9 Step 5 in detail ... 180

Appendix 6: Pyrrho SQL Syntax.. 181

A6.1 Statements .. 181

A6.2 Data Definition ... 182

A6.3 Access Control ... 187

A6.4 Type ... 188

A6.5 Data Manipulation ... 189

A6.6 Value .. 191

A6.7 Boolean Expressions .. 193

A6.8 SQL Functions ... 194

A6.9 Statements .. 196

The Pyrrho Book (May 2015)

с

A6.10 XML Support ... 198

Appendix 7 Pyrrhoôs condition codes .. 200

Appendix 8: Pyrrhoôs System Tables ... 204

Appendix 9: The Pyrrho Class Library Reference ... 206

A9.1 DatabaseError .. 207

A9.2 Date .. 207

A9.3 PyrrhoArray ... 207

A9.4 PyrrhoColumn .. 207

A9.5 PyrrhoCommand .. 207

A9.6 PyrrhoConnect ... 208

A9.7 PyrrhoDocument .. 209

A9.8 PyrrhoInterval .. 209

A9.9 PyrrhoReader ... 209

A9.10 PyrrhoRow ... 210

A9.11 PyrrhoTable .. 210

A9.12 PyrrhoTransaction .. 210

Appendix 10: Pyrrhoôs Connection String .. 211

Index to Syntax ... 213

The Pyrrho Book (May 2015)

т

/ƘŀǇǘŜǊ мΥ LƴǘǊƻŘǳŎǝƻƴ ǘƻ ǘƘŜ .ƻƻƪ

This book focuses on a number of aspects of database management systems that are important in real
life application, but in which current products fall short of what is required. The book will make a
contribution to DBMS design by suggesting a number of fundamental improvements to DBMS
architecture, and validating them by means of a working proof-of-concept DBMS, Pyrrho, that includes
not just the basic relational model, but most of the features of ISO-standard SQL and some other
suggestions from the database community. We will discuss the trade-offs in speed and complexity
involved in including these features: over the years the set of additional features offered by Pyrrho
has changed, with some advanced features (RDF, SPARQL, JPA, client-side data models etc) being
removed from Pyrrho where the added complexities have not justified themselves.

In this book, supporting data consistency is a prime concern. In particular it should not be the
ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǊŜǎǇƻƴǎƛōƛƭƛǘȅ ǘƻ Ƴŀƛƴǘŀƛƴ ŎƻƴǎƛǎǘŜƴŎȅ ƻǊ ǘƻ ŎƭŜŀƴ ǳǇ after errors. The DBMS should have
the task of ensuring that data is consistent and constraints as defined in the schema are maintained.
While databases should be fast and scalable, 100% accuracy is more important than speed.
Alternatives to the relational model are included in this book where relevant: it is a misconception
that the failings of database products are somehow the fault of the relational model or SQL.

This book will take for granted the concerns of introductory texts, such as the relational design, SQL,
entity-relationship modelling, joins and triggers. One of these concerns, άƴƻǊƳŀƭ ŦƻǊƳέ ŘŀǘŀΣ is notable
here in that it contributes to database correctness, since any duplication of data has a potential for
inconsistency. It represents an efficiency trade-off since with normal form, the information for the
domain needs to be reconstructed by recombining data from these extra tables or selecting columns
from larger tables; and where normalisation is reversed for efficiency reasons, it is at the cost of
repairing duplicates, for example with the help of triggers. These considerations are of interest, but
they come before the starting point for this book: we assume good database design. Our concerns
begin with such issues as transaction non-isolation, the suspending of constraints, or inadequate
transactional guarantees.1

In fact, the most serious criticism of existing commercial products relates to ACID properties and
implementation of transactions, wherein many cases they dƻƴΩǘ follow their own documentation.
When this book is used in a university course I would strongly recommend including the Transactions
tutorial from DBTechNET.org which provides a useful critique of a range of commercial DBMS from
this viewpoint, and supplies a set of interesting exercises to try out on any other supposedly ACID-
compliant DBMS. But rather than merely criticise these products, this book offers a set of design
proposals for solving the problems of consistency, embodied in the open-source Pyrrho DBMS. In
order to show the practicality of these design proposals for advanced database scenarios, this book
ƎƻŜǎ ōŜȅƻƴŘ ǎƛƳǇƭƛŦƛŜŘ ŜȄŀƳǇƭŜǎ ǘƻ ǎƘƻǿŎŀǎŜ tȅǊǊƘƻΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƻŦ ŘƛǎǘǊƛōǳǘŜŘ ŀƴŘ ǇŀǊǘƛǘƛƻƴŜŘ
databases, and strongly typed features of standard SQL.

There are some practical sessions in appendices. Most of these use Pyrrho as the database engine,
but the first appendix gives a more general introduction to building database applications, using a
number of database products. Shorter practical exercises are included in the chapters as the
corresponding topic is presented. Unfortunately no product sticks rigidly to the standard SQL syntax
is described in ISO-9075. Pyrrho is closer than most but the SQL syntax appendix is really required
reference during practical sessions. A final group of appendices cover some technical details on Pyrrho:
the error codes, and system tables.

1 Some of these difficulties are caused by transaction properties mandated by the ISO standard for SQL. Non-
compliance with the SQL standard in these areas is legitimate from the viewpoint of this book: there are other
aspects of standard SQL that should never be allowed (for example ineffective REVOKE, ON DROP NO ACTION,
άōǊŀƴŎƘ ǘǊŀƴǎŀŎǘƛƻƴǎέύΦ

The Pyrrho Book (May 2015)

у

I expect all readers will have attended at least one course on Databases, but the subject area is quite
complex. Actual building of database applications has been a neglected area in most university
programmes. The first set of practical exercises in Appendix 1 helps to motivate the discussion by
showing some simple approaches to database application development.

мΦм 5ƻǿƴƭƻŀŘ tȅǊǊƘƻ

All editions of Pyrrho are available from www.pyrrhodb.org for immediate download. Provided
the .NET framework has been installed, it is possible to extract all of the files in the distribution to a
single folder, and start to use Pyrrho in this folder without making any system or registry changes.2
The distribution contains a user manual called Pyrrho.docx: there is some overlap of material between
Pyrrho.docx and this book, but the focus in this book is on general principles of databases, while the
manual contains more technical details about Pyrrho.

There are several editions of Pyrrho: Professional and Open Source, and the embedded versions of
each. They use the same relational engine, API, ACID transactions, integrated security and multi-user
access but have a different database format (*.pfl.*.osp) for security reasons. There are corresponding
client libraries (PyrrhoLink.dll, OSPLink.dll) and embedded editions (EmbeddedPyrrho.dll, OSP.dll)
where an application has one or more private databases3. It is very important to understand that the
open-source tools cannot be used with the professional server, and vice-versa.

The open-source edition includes some database features omitted from the professional edition for
reasons of security. The open-source client OSPLink.dll supports SWI-Prolog and PHP. Otherwise the
client API is compatible between the two editions. In the Open Source Edition there is also a client
library for Java: OSPJ provides the package org.pyrrhodb.*. There are also some technical explanations
ƻŦ tȅǊǊƘƻΩǎ inner workings in a document called SourceIntro.docx, and there is a catalogue of the C#
classes used in the server in Classes.xlsx.

You are allowed to view and test the code, and incorporate it in other software, provided you do not
create a competing product. You can redistribute any of the files available on the Pyrrho website in
their entirety or embed the dlls or any of the source code in an application. Otherwise, like other
editions of Pyrrho, use of this open source edition is subject to the end-user license, and any uses
other than those described here requires a license from the University of the West of Scotland.

Database files are generally smaller than those of other database products. Files do not contain any
indexes or empty space, so an empty database file is less than 1KB. Database files do grow larger if
there are many updates because Pyrrho maintains a full historical record. It is helpful to separate data
comprising the historical record from ad-hoc or transient analysis files, so Pyrrho has a multi-database
connection mechanism to facilitate connecting to more than one database at a time.

Currently PyrrhoSvr.exe is approximately 870KB, and when running the server process starts out with
about 12MB of memory, but requires approximately as much additional memory as the size of the
database file. Memory (RAM) is required only for current data, so if many records in the database
have been deleted, or much of the database file consists of updates, the working memory required
will be less than the size of the database file.

Pyrrho is intellectual property of the University of the West of Scotland, United Kingdom. The
associated documentation and source code, where available, are copyright of the University of the
West of Scotland. Your use of this intellectual property is governed by a standard end-user license

2 However, it is a good idea to have a separate folder for the databases. It is simplest to copy the server
executable to the folder you plan to use. See section 1.2.
3 It is best to provide exactly one of these four dlls in folders containing client executables. We no longer
recommend installing components in the global assembly cache.

http://www.pyrrhodb.org/

The Pyrrho Book (May 2015)

ф

agreement, which permits the uses described above without charges. All other use requires a license
from the University of the West of Scotland.

мΦн ¢ƘŜ tȅǊǊƘƻ 5.a{ ǎŜǊǾŜǊ

The server PyrrhoSvr.exe is normally placed in the folder that will also contain the database files. The
Professional and Open Source editions of PyrrhoSvr can be started from the command line, by the
user who owns this folder. It is a good idea to run the server in a command window, because
occasionally this window is used for diagnostic output. (If you are using Embedded Pyrrho only, the
database engine is included in the application and so the server does not need to be running.)

Pyrrho provides its client service by default on port 5433, but will find another port if 5433 is already
in use. By default Pyrrho will try to set up a REST service on ports http 8180 and https 8133, using
Windows authentication, and a MongoDB-like service on port 27017. (You can supply your own server
certificate for transport layer security and/or specify different ports.)

On Windows 7 systems and later, if you get Access denied, you can either run the server as
administrator, or you can fix the http url reservations. To do this open a command prompt as
administrator and issue the following commands (with your full user name where shown):

netsh http add urlacl http://127.0.0.1:8180/ user= DOMAIN\ user

netsh http add urlacl https://127.0.0.1:8133/ user= DOMAIN\ user

If you get other error messages try using different ports using the command line options described
below.

мΦо {ǘŀǊǝƴƎ ǘƘŜ ǎŜǊǾŜǊ

The server is normally started from the command line, in the same folder as the server binary: in the

distribution this is in the Pyrrho or OSP folder closest to the root of the distribution. The command

line syntax is as follows (for Open Source Pyrrho, the server name is OSP).

PyrrhoSvr [- h: host] [ïp: port] [- s: port] [- S: port] [- M:port] [- d: path]

On Linux systems, you will need the Mono runtime installed, and the command line begins mono
PyrrhoSvr.exe .

The ςh and ςp arguments are used to set the TCP host name and port number to something other
than 127.0.0.1 and 5433 respectively. This can be a useful and simple security precaution. Note that
the host IP address used must match the host name given in connection strings. See Appendix 10.

The ςs and ςS flags modify the ports for the REST service from the defaults of 8180 and 8133.

The ςd flag can be used to speciŦȅ ǘƘŜ ǎŜǊǾŜǊΩǎ ŘŀǘŀōŀǎŜ ŦƻƭŘŜǊΥ ǿŜ ǿƛƭƭ ŜȄǇƭƻǊŜ ǘƘŜ ǳǎŜ ƻŦ ǘƘƛǎ ƻǇǘƛƻƴ
and some additional flags in the Appendices on Distributed and Partitioned databases when we model
the use of multiple servers.

The Pyrrho Book (May 2015)

мл

мΦп 5ŀǘŀōŀǎŜ ŬƭŜǎ

PyrrhoSvr.exe, the folder that contains it, and all the database files in this folder are normally owned
ōȅ ǘƘŜ ǎŀƳŜ ǳǎŜǊΣ ŎŀƭƭŜŘ ǘƘŜ ǎŜǊǾŜǊ ŀŎŎƻǳƴǘ ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ƴƻǘŜǎΦ bƻǘŜ ǘƘŀǘ ǘƘŜ άŘŀǘŀōŀǎŜ ƻǿƴŜǊέ ƛǎ
different ς as described in this section.

If the serǾŜǊ ŎǊŜŀǘŜǎ ŀ ŘŀǘŀōŀǎŜ όŦƛƭŜύ ƻƴ ōŜƘŀƭŦ ƻŦ ŀ ŎƭƛŜƴǘΣ ǘƘŜ ŎƭƛŜƴǘ ǳǎŜǊΩǎ ƴŀƳŜ ǿƛƭƭ ōŜ ǊŜŎƻǊŘŜŘ ƛƴ
the very first record of the file: this user is then established as the database owner, and by default has
full administrative control over the database.

On the Open Source edition of Pyrrho, database files have extension .osp. For other editions the
extension is .pfl. For example, a database called Sales will be contained in a file Sales.pfl or Sales.osp.
If a database file grows beyond 4GB it will be split into sections: after the first one their names will be
Sales.1.pfl, or Sales.1.osp, etc. (As is suggested by the different extensions, Open Source Pyrrho files
cannot be used by other editions and vice versa.)

You can inspect the database folder from time to time to check everything is in order. It is not a good
idea to rename a database file, as that is the name of the default database Role, and Pyrrho will infer
some sort of partitioning if the two do not match.

For embedded applications, the database file(s) should be installed alongside the application (e.g. as
an asset).

мΦр ¢ƘŜ ŎƭƛŜƴǘ ǇǊƻƎǊŀƳǎ

There are two client utilities at present: a traditional command-line interpreter PyrrhoCmd, and a
Windows client called PyrrhoSQL. As with all Pyrrho clients, the PyrrhoLink.dll or OSPLink.dll assembly
is also required. We discuss these first. The distribution also contains a REST client and a transaction
profiling utility.

OSPLink.dll (or the Java package org.pyrrhodb.*) is used by any application that wishes to use the
Open Source Pyrrho DBMS, and PyrrhoLink.dll is needed by any application that wishes to use the
Professional edition of the Pyrrho DBMS. These client libraries have similar functionality. This library
includes support for client applications. The simplest possible approach is simply to place
PyrrhoLink.dll (or OSPLink.dll) in the same folder as the application that is using it.

PyrrhoCmd is a console application for simple interaction with the Pyrrho server. Basically it allows
SQL statements to be issued at the command prompt and displays the results of SELECT statements
in a simple form. For most purposes it is best to place the command line utilities such as PyrrhoCmd
and the client dll in a different location from the server. They occupy very little disk space: and the
ŘŀǘŀōŀǎŜǎ ǿƛƭƭ ōŜ ŎǊŜŀǘŜŘ ƛƴ ǘƘŜ ǎŜǊǾŜǊΩǎ ŦƻƭŘŜǊΦ

With embedded databases things are different: Databases will be in the same folder as applications
using an embedded edition of Pyrrho.

мΦс /ƘŜŎƪƛƴƎ ƛǘ ǿƻǊƪǎ

For simplicity, on the same machine as the server, open a command window and use cd to navigate

to the same folder as the client executable. Be sure to use the correct version of PyrrhoCmd: you

cannot use the professional version of PyrrhoCmd with the open-source server or vice versa. (It is not

usually a good idea to start up PyrrhoCmd or the server by double-clicking, because the command line

parameters can be useful.)

PyrrhoCmd

SQL> table " Log$ "

The Pyrrho Book (May 2015)

мм

In SQL2011 table id is the same as select * from id for base tables and system tables.

Your output will differ in a number of respects from this, (e.g. your folder will probably not be E:\OSP)
and some explanations are important here as we can see the Windows identity of the user that started
PyrrhoCmd (not the server).

Normally, the PyrrhoCmd command line will have an argument parameter indicating the database(s)
to connect to. If none is given, PyrrhoCmd will open (or create) a database called Temp. You can
confirm this by looking in the ǎŜǊǾŜǊΩǎ folder: you will see a file called Temp.pfl or Temp.osp (it was
not there before). Pyrrho creates a default Role for the database with the same name as the database,
and records the identity of the creator user (this will be your login ID). All later entries in the log file
will have transaction information.

You can use control-C, or close the window, to exit from PyrrhoCmd. (If you want to delete the
database file that you have just created, you will need to stop the server.)

When starting up PyrrhoCmd, the following command line arguments are supported:

database ... One or more database names on the server. The default is Temp. Do

not include the .osp or .pfl file extension.

- h: hostname Contact a server on another machine. The default is localhost

- p: nnnn Contact the server listening on this port number. The default is 5433

- s Silent: suppress warnings about uploads and downloads

- e: command Use the given command instead of taking console input. (Then the

SQL> prompt is not used.)

- f: file Take SQL statements from the given file instead of from the console.

- b No downloads of Blobs

- ? Show this information and exit.

Pyrrho can support locales other than English, but such localisations are not currently included in the
distribution. Whether the command prompt (console) window is able to display the localised output
ǿƛƭƭ ŘŜǇŜƴŘ ƻƴ ǎȅǎǘŜƳ ƛƴǎǘŀƭƭŀǘƛƻƴ ŘŜǘŀƛƭǎ ǘƘŀǘ ŀǊŜ ƻǳǘǎƛŘŜ tȅǊǊƘƻΩǎ ŎƻƴǘǊƻƭΦ [ƻŎŀƭƛǎŀǘƛƻƴ ƛǎ ƳƻǊŜ
effective with Windows Forms or Web Forms applications.

¢ƘŜ {v[Ҕ ǇǊƻƳǇǘ

PyrrhoCmd is normally used interactively. At the SQL> prompt you can give a single SQL statement.
There is no need to add a semicolon at the end. There is no maximum line length either, so if the
ŎƻƳƳŀƴŘ ǿǊŀǇǎ ŀǊƻǳƴŘ ƛƴ tȅǊǊƘƻ/ƳŘΩǎ ǿƛƴŘƻǿ ǘƘƛǎ ƛǎ ƻƪŀȅΦ

The Pyrrho Book (May 2015)

мн

SQL> set role ranking

Unless you use multiline command as described below, be careful not to use the return key in the
middle of an SQL statement as the end of line is interpreted by PyrrhoCmd as EOF for the SQL
statement.

At the SQL command prompt, instead of giving an SQL statement, you can specify a command file
using @filename. Command files are ordinary text files containing an SQL statement on each line.

If wraparound annoys you, then you can enclose multi-line SQL statements in [] . [and] must then
enclose the input, i.e. be the first and last non-blank characters in the input.

SQL> [create table directors (id int primary key,

> surname char,

> firstname char, pic blob)]

Note that continuation lines are prompted for with > . It is okay to enclose a one-line statement in [] .

Note that Pyrrho creates variable length data fields if the length information is missing, as here. This
seems strange at first: a field defined as CHAR is actually a string.

Binary data is actually stored inside the database table, and in SQL such data is inserted using hex
encoding. But PyrrhoCmd supports a special syntax that uses a filename as a value:

SQL> [insert into directors (id, surname, firstname) values (1,

'Spielberg', 'Steven', ~spielberg.gif)]

The above example shows how PyrrhoCmd allows the syntax ~source as an alternative to the
SQL2011 binary large object syntax X'474946é' . PyrrhoCmd searches for the file in the current
folder, and embeds the data into the SQL statement before the statement is sent to the server.

As this behaviour may not be what users expect, the first time Pyrrho uploads or downloads a blob, a
message is written to the console, e.g.:

Note: the contents of source is being copied as a blob to the server

source can be enclosed in single or double quotes, and may be a URL, i.e. ~source can be
~"http:// something " . Another use of ~file, for importing datafrom spreadsheets, is described
in appendix 3 (section A3.3).

Data is retrieved from the database using TABLE or SELECT statements, as indicated above.

If data returned from the server includes blobs, by default PyrrhoCmd puts these into client-side files
with new names of form Blob nn .

.ƭƻōǎ ǊŜǘǊƛŜǾŜŘ ǘƻ ǘƘŜ ŎƭƛŜƴǘ ǎƛŘŜ ōȅ ǘƘƛǎ ƳŜǘƘƻŘ ŜƴŘ ǳǇ ƛƴ tȅǊǊƘƻ/ƳŘΩǎ ǿƻǊƪƛƴƎ ŘƛǊŜŎǘƻǊȅ όǿƘƛŎƘ ƛǎ
usually different from the database folder). To view them it is usually necessary to change the file
extension, e.g. to Blob1.gif. However, on the server side, such data is actually stored permanently
inside database files.

Transactions in Pyrrho are mandatory, and are always serializable. By default, each command is
committed immediately unless an error occurs. Alternatively, you can start an explicit transaction at
the SQL> prompt:

SQL> begin transaction

Then the command line prompt changes to SQL-T> to remind you that a transaction is in progress.
This will continue until you issue a rollback or commit command at the SQL-T> prompt. If an error

The Pyrrho Book (May 2015)

мо

is reported by the database engine during an explicit transaction, you will get an additional message
saying that the transaction has been rolled back.

Note that this reminder and warning behaviour is generated in the command line client on the basis
ƻŦ ƴŀƠǾŜ ǘŜȄǘ ƳŀǘŎƘƛƴƎ όƻŦ άōŜƎƛƴ ǘǊŀƴǎŀŎǘƛƻƴέ ŜǘŎύΦ ¢ƘŜ ǳǎŜ ƻŦ ŎƻƳƳŜƴǘǎ ŀƴŘ ƻǘƘŜǊ ƴƻƛǎŜ Ƴŀȅ ŀŦŦŜŎǘ
these feedback mechanisms. The database engine however is not confused. Serious transactions
should use the API instead of the command line.

The Pyrrho Book (May 2015)

мп

/ƘŀǇǘŜǊ н 5ŀǘŀ /ƻƴǎƛǎǘŜƴŎȅΣ ¢ǊŀƴǎǇŀǊŜƴŎȅ ŀƴŘ 5ǳǊŀōƛƭƛǘȅ

When people speak of databases, consistency, transparency and durability are three of the main
properties they ought to expect. But in database software it has very strangely become normal to
support inconsistency, and undermine the efforts of software engineers to provide reliable systems,
in a mistaken pursuit of speed at all costs. It is not clever to base any decisions on incorrect data, so
getting a wrong answer before your competitors is no real advantage. In this book we assume that
inconsistency is always bad: since every database starts out in a consistent state it is the job of the
DBMS to prevent inconsistencies from creeping in.

Companies almost always store the data for their business processes (customers, employees, accounts
etc) in databases. Interestingly, the data in company databases often is retained for decades, long
after the computer systems used to create then have ceased to exist. Legacy data still needs to be
accessed.

!ƭǘƘƻǳƎƘ ŎƻƳǇǳǘŜǊ ōƻƻƪǎ ƻŦǘŜƴ ǊŜŦŜǊ ǘƻ άǘƘŜ ŎƻǊǇƻǊŀǘŜ ŘŀǘŀōŀǎŜέ ƛǘ ƛǎ ǊŀǊŜ ƴƻǿ ŦƻǊ ŀ ŎƻƳǇŀƴȅ ǘƻ ƘŀǾŜ
just one. But any of these corporate databases can be accessed by numerous other computers and
programs in the company or its various branches or customers; and database management systems
need to be able to cope with many concurrent connections to the database. Such database systems
are said to be server-based (client-server database systems): a program that needs to access the data
in the database opens a connection to the server, and uses a standard protocol to send and receive
the data it wants. One of the main topics in this course will be the ways that the DBMS ensures
consistency and integrity in a busy database system, and is as available as possible.

Some computer programs use local databases: that is, there are no other programs that need to access
the data while it is in use. Such database systems are often called embedded. For example, many
devices today (phones, cars, fridges etc) have computer systems that use local databases. With HTML5
we have ways for web pages to have local data.

Many important pieces of information in a company are not stored in databases, however. It is fairly
rare for spreadsheets, web pages or office documents to be stored in the database. Instead these are
stored in the file system as ordinary files. Strangely, although such individual files are commonly
security-protected in company computer systems and shared explicitly among user groups, most
companies still apply security in an all-or-nothing way the entire database, and not to the separate
types of data inside it, despite the availability of security facilities in the database management system.
This is yet another aspect we will look at in this module, as it would seem that the security facilities
ŀǊŜ ƴƻǘ ŎǳǊǊŜƴǘƭȅ ǳǎŜŘ ōŜŎŀǳǎŜ ǘƘŜȅ ŘƻƴΩǘ ǉǳƛǘŜ ƳŀǘŎƘ ǘƘŜ ŎƻƳǇŀƴȅΩǎ ƴŜŜŘǎΦ

The database data files are accessed by the database server, so they normally belong to the user
account that starts up the database server (often this is a special anonymous account). The database
server controls who can connect to the database.

The Pyrrho database management system is named after an ancient Greek philosopher, Pyrrho of Elis
(360-272BC), who founded the school of Scepticism. We know of this school from writers such as
Diogenes Laertius and Sextus Empiricus, and several books about Pyrrhonism (e.g. by Floridi) have
recently appeared.

And their philosophy was called investigatory, from their investigating or seeking the truth on
all sides.

(Diogenes Laertius p 405)

tȅǊǊƘƻΩǎ ŀǇǇǊƻŀŎƘ ǿŀǎ ǘƻ ǎǳǇǇƻǊǘ ƛƴǾŜǎǘƛƎŀǘƛƻƴ ǊŀǘƘŜǊ ǘƘŀƴ ƳŜǊŜ ŀŎŎŜǇǘŀƴŎŜ ƻŦ dogmatic or oracular
utterance.

Accordingly in this database management system, care is taken to preserve any supporting evidence
for data that can be gathered automatically, such as the record of who entered the data, when and (if

The Pyrrho Book (May 2015)

мр

possible) why; and to maintain a complete record of subsequent alterations to the data on the same
basis. The fact and circumstances of such data entry and maintenance provide some evidence for the
truthfulness of the data, and, conversely, makes any unusual activity or data easier to investigate. This
additional information is available, normally only to the database owner, via SQL queries through the
use of system tables, as described in Chapter 8.2 of this manual. It is of course possible to use such
automatically-recorded data in databases and applications.

In other ways Pyrrho supports investigation. For example, in SQL2011 renaming of objects requires
copying of its data to a new object, In Pyrrho, by contrast, tables and other database objects can be
renamed, so that the history of their data can be preserved. From version 4.5, object naming is role-
based (see section 3.6).

The logo on the front cover of this book ŎƻƳōƛƴŜǎ ǘƘŜ ŀƴŎƛŜƴǘ άDǊŜŜƪ ƪŜȅέ ŘŜǎƛƎƴΣ ǳǎŜŘ ǘǊŀŘƛǘƛƻƴŀƭƭȅ
in architecture, with the initial letters of Pyrrho, and suggests security in its interlocking elements.

нΦм 5ǳǊŀōƛƭƛǘȅ

Of the trio of topics mentioned in the chapter heading, Durability looks the easiest: we assume that
we want to keep data in a good form, and our business operations need to be recorded properly. Of
course the resulting values of data (account balances etc) will be modified later on as a result of our
business processes, so that durability means that we should be able to show later that the data had
this value today.

Strangely, very few database systems really have the durability property. When values are deleted or
modified there is usually no way to recover the values that were there before. Some commercial
systems support a transaction log, but there are no mechanisms to require it to be kept, and in practice
such documents are seen as redundant/duplication and deleted as a matter of routine.

As a result, for real durability, database designers need to create special tables (journals, histories etc)
when such records are a legal requirement.

In the Pyrrho DBMS the transaction log is precisely the durable record of the database, and so it cannot
be deleted without deleting the entire database.4 The current state of the data (with its indexes etc)
is in memory. A similar approach has been reported for in-memory column-oriented DBMS by Wust
et al (2012). This architecture brings significant advantages: not only do we have durability of the
transaction record, but two other advantages: (a) committing a transaction involves appending the
transaction record to the end of the file, and (b) the amount of writing to the disk during operation is
reduced (according to benchmark measurements for Pyrrho (Crowe 2005)) by a factor of 70.

This large difference in performance arises because in the traditional database architecture it is not
only the current state of the data that is held on disk, but also all of the indexes and other data
structures, and so any change to the database results in changes to many parts of the disk files. In
нллпΣ ǿƘŜƴ tȅǊǊƘƻΩǎ ŘŜǎƛƎƴ ǿŀǎ ŦƛǊǎǘ ǇǳōƭƛǎƘŜŘΣ ƻōƧŜŎǘƛƻƴǎ ŦǊƻƳ ǘƘŜ ŘŀǘŀōŀǎŜ ŎƻƳƳǳƴƛǘȅ ŎŜƴǘǊŜŘ ƻƴ
the large amount of memory that would be needed for real commercial databases. In practice
databases of 20GB are regarded as reasonable. However, standard DBMS generally use fixed size data
fields, while Pyrrho does not, and in 2013, 20GB of memory no longer seems such a large amount.

tȅǊǊƘƻΩǎ ŀǇǇǊƻŀŎƘ ǿƻǊƪǎ best where durability is important, such as customer records, or financial
transactions, where data might need to be retrieved years later. There are circumstances where
durability may be less important, for example in an enterprise service bus implementation, where the
horizon for durability is measured in minutes rather than years. In ESB systems, such messages would
normally only be captured for permanent storage as part of a special troubleshooting activity.

4 This design decision in Pyrrho is discussed further in section 3.7.

The Pyrrho Book (May 2015)

мс

нΦн ¢ǊŀƴǎǇŀǊŜƴŎȅ

Transparency (or accountability) means we should be able to discover why and when data changes:
who or what made the change, was it routine or unusual? In this course we will see this is closely tied
to the concept of business roles. What becomes important is not just who made the change, but also
what role they were playing (e.g. Iyer 2009, Oh and Park 2003): were they carrying out part of their
day-to-day role of sales clerk or were they doing something else? Some managers may be authorised
to play more than one role, but if they are carrying out a standard procedure it is reasonable for them
to say what it is (and not just arbitrary, unaccountable, caprice).

A good database design will build in role-based support for the standard business procedures it
supports, but very few do. Mƻǎǘ 5.a{Ωǎ ǎƛƳǇƭȅ ŀƭƭƻǿ ŀƴȅƻƴŜ ǿƛǘƘ ǘƘŜ ǇƻǿŜǊ ǘƻ Řƻ ǎƻƳŜǘƘƛƴƎ ǘƻ Řƻ
ƛǘΣ ŀƴŘ ŘƻƴΩǘ ǇǊƻǾƛŘŜ ŀ ƳŜŎƘŀƴƛǎƳ ǘƻ ǘǊŀŎƪ ǘƘŜ ǊƻƭŜǎ ōŜƛƴƎ ǇƭŀȅŜŘΦ

In Pyrrho the transaction record includes not only the user identity for a transaction but the role. A
user can only use one role at a time for any given database. Roles should capture and restrict to normal
business operations. If it becomes necessary for intervention to correct some unusual condition, some
administrative role with greater permissions can be used. Auditing will highlight these and they might
usefully indicate a need for process improvement (Moorthy et al, 2011).

нΦо /ƻƴǎƛǎǘŜƴŎȅ

Consistency means that the data does not contain any contradictions. In good database design a first
step in this direction is to minimise copied data: if information is repeated in different places it become
hard to ensure consistency when that information changes. Dependent information (e.g. total or
Ŏƻǳƴǘύ ǎƘƻǳƭŘ ōŜ ŎƻǊǊŜŎǘ ǿƘŜƴ ƛǘ ƛǎ ŀŎŎŜǎǎŜŘΦ Lƴ ƭƛƴŜ ǿƛǘƘ ǘƘŜ άƴƻ ŎƻǇƛŜǎέ ǊǳƭŜΣ ƛǘ is actually best if a
sum or count is recomputed when required, rather than if an old value is stored somewhere.

As mentioned above, in many DBMS, a single transaction results in many changes to data files, many
of which are effectively copies, e.g. a new row in a table would typically have the new primary key
value stored in several places, bringing a risk of inconsistency. In the next section we explore the link
between transactions and consistency, and examine what this means for constraints.

Another difficult area for consistency is where some data is stored in one database (or one computer)
and some elsewhere (in a file, in another database, or on another computer). In such situations it is
best if responsibility for ensuring consistency resides somewhere, for example, with (one of?) the
DBMS involved, but often there are real difficulties, for example, a transfer from one bank to another.
Recent research has revisited this problem, addressing the impact of service oriented architectures
(e.g. Lars Frank 2011). We return to this sort of problem below.

нΦп ¢ǊŀƴǎŀŎǝƻƴǎ

The practical way of ensuring consistency is to use transactions. A transaction consists of a set of
changes to the database that is logically ATOMIC. That is, although there might be more than one step,
the process comprising these steps is indivisible. The classic example is that of a bank transfer.
Although there are two steps (taking a sum of money from one account and placing it in another) the
process of transfer is logically indivisible. During the process the total amount of money in the bank
will be wrong. So while the separate steps are proceeding, nobody else should be able to see any of
the changes until the process is complete and the data is consistent. That is, the transaction needs to
be ISOLATED until it is either completed (COMMIT) or abandoned (ROLLBACK).

All practical DBMS allow concurrent access so that several clients can be operating on the database at
the same time. Not all of them will be making changes to the database, and in any case changes are
ƭƛƪŜƭȅ ǘƻ ŀŦŦŜŎǘ ŘƛŦŦŜǊŜƴǘ ǇŀǊǘǎ ƻŦ ǘƘŜ ŘŀǘŀōŀǎŜΣ ŀƴŘ ǎƻ ǿƻƴΩǘ ŀŦŦŜŎǘ ŜŀŎƘ ƻǘƘŜǊΦ ¢ƘŜ ǘƘŜƻǊȅ ƻŦ ŘŀǘŀōŀǎŜ
transactions considers each transaction as a sequence of read and write operations each occurring at
a particular time. Concurrent transactions are transactions whose operations overlap in time: they are
valid as long as they are serialisable, that is, if the reads and writes could have achieved the same

The Pyrrho Book (May 2015)

мт

results if all of the operations of the transactions had been moved in time so that the transactions do
not overlap. Many DBMS products write changes to disk storage before the transaction commits: in
times past this was needed since some transactions might involve too much data to be held in memory.
Researchers have examined higher-level disk operations to improve this mechanism, e.g. Ouyang et
ŀƭ όнлммύΦ tȅǊǊƘƻΩǎ ŀǇǇǊƻŀŎƘ ƛǎ ǘƻ ŀǎǎǳƳŜ ƳŜƳƻǊȅ ƛǎ ƭŀǊƎŜ ŜƴƻǳƎƘ ǘƻ ŀǾƻƛŘ ŘƻƛƴƎ ŀƴȅ ǿǊƛǘƛƴƎ ǘƻ ƴƻƴ-
volatile storage until the transaction commits.

In the database literature transactions are called ACID (atomic, consistent, isolated and durable). All
DBMSs provide for transactions, but most allow exceptions to the ACID principles. Allowing exceptions
means sacrificing consistency, and in practice many systems then need to introduce notions of
compensation activities, to undo changes that may have depended on a transaction that has now been
cancelled.5 For such compensation activities to be automated, they need to be specified in advance
for each transaction. In the vast majority of cases, the transaction is not cancelled, and the
compensation action is just discarded. It has been estimated that up to 40% of DBMS activity relates
to preparation of compensation actions that are never needed, and complex cases have been
described that require whole hierarchies of compensation actions.

Dependent systems should not take any consequential action until the database transaction is
committed: if this rule is followed there should be no need for compensation. There are several
reasons commonly given for not following the rules. One, hinted at above, is that the transaction may
involve third parties and the delays involved in using distributed commit protocols seem excessive.
This amounts to parties proceeding in the absence of agreement, and must be seen as a risky step.
Another reason is that most DBMS using locking for transaction control, and so parts of the database
are locked during the distributed transaction protocol, which can be costly. This last point is really
quite hard to underǎǘŀƴŘΣ ǎƛƴŎŜ Ǌƻōǳǎǘ άƻǇǘƛƳƛǎǘƛŎέ ǘǊŀƴǎŀŎǘƛƻƴ ǇǊƻǘƻŎƻƭǎ ǘƘŀǘ ƳƛƴƛƳƛǎŜ ƭƻŎƪƛƴƎ ƘŀǾŜ
been well-documented for decades. Pyrrho uses optimistic concurrency control, and minimises this
sort of delay: it also rigorously enforces transaction isolation so that it is impossible to know anything
about any ongoing transaction.

The difficulties caused by the bad behaviour of pessimistic (locking) transaction management are far-
reaching, and have even led to many businesses deciding that they cannot afford transaction
management. Other aspects of RDBMS technology have also been blamed for poor performance, and
there are many vendors offering no-SQL databases, or columnar databases. Many commercial DBMS
prohibit benchmark testing of their products in their licensing arrangements. Pyrrho positively invites
benchmarking (Crowe 2005), and despite its rigour its performance is comparable with commercial
products.

нΦр !ǇǇƭƛŎŀǝƻƴ ǇǊƻƎǊŀƳƳƛƴƎ ƛƴǘŜǊŦŀŎŜǎΥ !5hΦb9¢

There are numerous APIs for contacting database servers: the oldest in common use are ODBC and
W5./Φ WŀǾŀ tŜǊǎƛǎǘŜƴŎŜ ƘŀŘ ŀ ōǊƛŜŦ ǾƻƎǳŜΣ ŀǎ ŘƛŘ aƛŎǊƻǎƻŦǘΩǎ [LbvΦ ¢ƘŜ tIt !tL ƛǎ ƭƛƪŜ ŀ Ŏǳǘ-down
version of ADO.NET, and versions of ADO.NET are also used for MySQL and Pyrrho.

We will use some ADO.NET sample code in the lab. The following sequence is typical of standard
ADO.NET. The first step uses the database connection string. Every database has its own style of
connection string - for lots of examples see www.connectionstrings.com

ǾŀǊ Ŏƻƴƴ Ґ ƴŜǿ ···/ƻƴƴŜŎǘƛƻƴόάŎƻƴƴŜŎǘƛƻƴǎǘǊƛƴƎέ);
var cmd = conn.CreateCommand();
ŎƳŘΦ/ƻƳƳŀƴŘ¢ŜȄǘ Ґ άsome SQL SELECT stringέΤ

5 Compensation mechanisms should be supported by the DBMS if required by business logic. But they should
not be introduced merely because the DBMS does not support Web applications or transactions properly.
Pyrrho offers row-ǾŜǊǎƛƻƴ ŎƘŜŎƪƛƴƎ ŀƴŘ ƻǘƘŜǊ άŦƻǊŜƴǎƛŎέ ƳŜǘƘƻds to explore the dependency of later events on
ǇŀǊǘƛŎǳƭŀǊ ǘǊŀƴǎŀŎǘƛƻƴǎΣ ōǳǘ ǘƘŜ ǳǎŜ ƛƴ ǘƘŜ ƭƛǘŜǊŀǘǳǊŜ ƻŦ ǇƘǊŀǎŜǎ ǎǳŎƘ ŀǎ άŀǳǘƻƳŀǘƛŎ ŎƻƳǇŜƴǎŀǘƛƻƴέ ƳŜǊŜƭȅ
indicates poor transaction design or support.

The Pyrrho Book (May 2015)

му

var rdr = cmd.ExecuteReader();
while (rdr.Read())
{
ΧΦ κκ ŀŎŎŜǎǎ ǘƘŜ ǊŜǘǳǊƴŜŘ Řŀǘŀ ǳǎƛƴƎ ǊŘǊώлϐΣ ǊŘǊώмϐΣΦΦ
}
rdr.Close();
conn.Close();

This coding pattern is used for SQL strings that do SELECT. You can use cmd.ExecuteNonQuery() for
other sorts of SQL commands (update, delete etc).

You can only have one active data reader per connection (you can close one and start another of
course). You can have more than one Connection but remember that the DBMS will treat the two
connections as completely separate, so that the transaction mechanisms may mean that the two
connections see the same or different data.

For this reason, if we need to traverse data from several tables together, we should use SQL joins (this
should save a lot of work anyway). We generally keep connections open for as little time as possible,
as they can consume resources on the server.

PHP starts the same way:

ϷŎƻƴƴ Ґ ƴŜǿ /haόάconnectionObjectέύΤ
$conn->ConnectionString = connectionString;
$rdr = $conn->Execute(SQLstring);
$row = $rdr->Read();
// Read returns -1 at the end of data, so we continue while $row is not an int:
while(!is_int($row))
ϑΧκκ ϷǊƻǿώлϐ ŜǘŎ ŦƻǊ ŀŎŎŜǎǎ ǘƻ Řŀǘŀ ǊŜǘǳǊƴŜŘ
}
$rdr->Close();

нΦс ! ŬǊǎǘ ōŜƴŎƘƳŀǊƪ

The C benchmark from the Transaction Processing Council (Raab et al, 2001) is a legendary test of
database performance, and models a clerical order-entry OLTP system. In this benchmark (TPCC) each
new order transaction involves over 20 round-trips to the database as the information is built up and
submitted, and transactional processing is required. On supercomputing clusters transaction rates of
30 million per minute are reported. Thomson et al (2012) report on the different approaches to
achieving such high transaction rates: other than using expensive hardware these all sacrifice
something important from the above principles.

The Pyrrho Book (May 2015)

мф

Results for ACID RDMBS in PCs are more modest, with 1500-2000 per minute being more normal. In
the past I have benchmarked Pyrrho at
2000 per minute (on a Dell laptop with
Windows 7). On my current 8-core laptop
and Windows 8, I get just over 1000 per
minute, but the CPU usage is only 14% as
the server runs on just one core.

The TPCC benchmark is designed to
behave badly with concurrency, since the
next-order-number is a bottleneck. Total
throughput of the benchmark is lower
with 2 terminals because of transaction
conflicts, but then increases slowly as
more terminals are added. I can use the
CPU more by running multiple concurrent
terminals (with 5 the CPU usage reaches
57%).

The TPCC application in the open-source distribution has tabs for the various functional tests of Tpcc,
but for the purposes of database tuning the two most interesting are Setup and New Order (pictured).
The Setup page allows you to decide how many warehouses, and contains buttons for creating the
database, its list of products, the districts with their lists of customers, and the warehouses with their
stock. The product descriptions and customer names and addresses are all generated according to
randomising rules in the TPCC specification: parameters such as tax are also randomised according to
the specification. All of this takes around ten minutes on a PC for a single warehouse, and the database
is initially 110MB. You can observe the progress of building the database by using a command window:
tȅǊǊƘƻ/ƳŘ ¢ǇŎŎΣ ŀƴŘ ǘƘŜƴ ŀǘ ǘƘŜ {v[Ҕ ǇǊƻƳǇǘΣ ǘŀōƭŜ άwƻƭŜϷ¢ŀōƭŜέ ǎƘƻǿǎ ǘƘŜ ƴǳƳōŜǊ ƻŦ Ǌƻǿǎ ǘƘŀǘ
have been set up in each table. If the server is shut down and restarted, it takes about a minute for
the database to be read in from disk, so if you start up the TPCC application you may have to wait this
long before the window appears.

The NewOrder page has two useful buttons: Run will run 2000 new orders and this will take one or
two minutes. The Step button allows you to see how a single order is built up. Each step models an
action of the clerk to select a district, a customer, an item, a quantity, entering them in the white parts
of the screen, and shows the responses from the database in the yellow parts of the screen.

It is not wise to use a single benchmark for performance tuning. But since it includes quite large data
sets this particular benchmark can be used with a database engine to investigate what happens to
network traffic (it is a huge advantage to use fixed size blocks), what is the best size for BTree buckets
(this hardly matters), whether minimising disk reads is worthwhile (5%), what enumeration
optimisation can be done (3% for a constant-key shortcut), will a specific index class for integer keys
work better than a generic one (no), what is the cost of database features such as multiple database
connections (1%), whether only using one kind of integer internally would help (no) etc.

нΦт tȅǊǊƘƻΩǎ ƛƴǘŜǊƴŀƭ ǎǘǊǳŎǘǳǊŜ

The database file contains (is) the transaction log, and this gets read in its entirety when the database
is loaded following a restart of the database server (cold start). Each database is in a separate file. The
database server operates on many database files on behalf of many clients. A single client application
can operate many databases at once, by opening connections to one or more databases at a time.

The database file begins with a four-ōȅǘŜ άƳŀƎƛŎ ŎƻƻƪƛŜέ ŀƴŘ ŜƴŘǎ with a five-byte end-of-file marker
that contains an encrypted digest of the database file. This marker is a sort of digital signature placed
there by the Pyrrho DBMS server, intended to ensure that changes to the database are only made by

The Pyrrho Book (May 2015)

нл

legitimate, accountable DBMS operations that form part of the transaction record. There are very few
differences between the open-source and professional editions of Pyrrho, but the algorithm for the
digest is one of them. If the digest does not match the contents of the database file, Pyrrho refuses to
proceed and reports that the database is corrupt.

The first two records after the four-byte marker record the owning role and owning user of the
database. All subsequent records in the transaction log record the role and user for the transaction
together with a universal-time timestamp. All transaction records are immutable, and can be referred
to using their position in the data file, which cannot be changed. The maximum size of the database
file is 0x40000000, but big data files are broken into 8GB sections for ease of management.

The data formats used for these transaction records are fully described in the Pyrrho manual: there
are about 40 different types of record for specifying domains, columns, tables, procedures, and for
setting up and modifying roles and security permissions. Any database object or record can be referred
to by its defining position. The name of an object thus becomes metadata and can be changed or made
role-dependent, so that the same object can be named differently by different roles.

Most of the records will contain data for the base tables. All of these are binary records that do not
depend on the machine data formats for the platform used apart from the basic concept of octet.
Character data uses Unicode UTF-8 encoding. Integers are represented in the data file as sequences
of octets, corresponding roughly to base-256 arithmetic. The maximum integer allowed has 2048 bits.
Numeric data is defined by two such integers, for mantissa and power-of-10 scale. Blobs (binary large
objects) are stored in the data file like any other data as an integer (possibly a very large one) followed
by the blob data as a list of octets. All dates and times use universal time.

This design brings many benefits as briefly mentioned in the above account: platform and locale
independence, the ability to refer to a database object by its defining position. Most importantly this
simple transaction log design of the database gives a natural automatic serialisation of transactions.

The data file represents level 1 of the Pyrrho engine. At level 2 (Physical) the design consists of the
transaction log records, and the concept of data type is defined at level 2. Transaction isolation is
handled in the Pyrrho DBMS engine by using immutable data structures up to level 3 (database) of the
design. Up to this level, all fields of data structures are (at least logically) constant, so that for example
any change made to a linked list or B-tree results in a new head node. When a transaction is committed,
the data is serialised to the data file(s), and the new head nodes for the database(s) affected will be
installed in the list of databases connected to the server.

Each ongoing transaction (level 4) uses a separate space of proposed database objects, so that the
ƻōƧŜŎǘǎ ōŜƛƴƎ ŘŜŦƛƴŜŘ ǿƛǘƘƛƴ ǘƘŜƳ ƘŀǾŜ ǘŜƳǇƻǊŀǊȅ άǇƻǎƛǘƛƻƴǎέ ŀōƻǾŜ лȄпллллллл ŀƴŘ ǘƘŜǎŜ ƴǳƳōŜǊǎ
are only unique within that ongoing transaction. At the start of transaction copies are made of the
head node of each database in the transaction: effectively this takes a snapshot of the database at the
start of the transaction, and the transaction proceeds on the basis of this starting database state.

Committing a transaction requires serialising the transaction to the data file/transaction log, and the
defining positions of objects are not known until this is done. During serialisation these are relocated
to their actual positions in the data file/transaction log.

The actual process of committing a transaction takes place in 3 stages. In stage 1, the connected
datafiles are checked for records that conflict with the current transaction. If conflicts are found, the
transaction rolls back. In stage 2, the databases are locked, and this check is repeated for even more
recent records, and if all is well, the transaction is serialised to the data file. Finally (stage 3), the data
just serialised is installed in the (level 3) data structures, and the locks are released.

Transactions that merely read data cannot conflict with any other transaction: it is as if the entire
transaction takes place at the begin time. For transactions that make changes to the database,

The Pyrrho Book (May 2015)

нм

everything read by the transaction must still be valid at the time the transaction is committed, so it is
as if all of the steps of the transaction take place at the commit time.

From this account we see that even with optimistic concurrency, there is always a short time when
locks are applied, but locking only occurs at the point of committing the transaction. All of the
transaction processing including constraint checking, triggers etc takes place beforehand and all of the
data required to commit the transaction has been assembled and is ready for serialisation.

Finally, all of the above discussion needs to be understood in connection with PȅǊǊƘƻΩǎ Ƴǳƭǘƛ-threading
model. Pyrrho DBMS uses multithreading at the level of connections (level 4): each connection runs
in a different thread. The transaction mechanism described in the last chapter applies within the
ŎƻƴƴŜŎǘƛƻƴΩǎ ǘƘǊŜŀŘΣ ŎƻƭƭŜŎǘƛƴƎ ǘƘŜ ŘŀǘŀōŀǎŜ ŦǊƻƳ ǘƘŜ ǎŜǊǾŜǊΩǎ όƭŜǾŜƭ оύ ōŀǎŜ ǘƘǊŜŀŘ ŀǘ ǘƘŜ ǎǘŀǊǘ ƻŦ ŜŀŎƘ
transaction, and synchronising with it when the transaction commits.

In the next chapter we will consider the effects of this approach to transactions and compare with the
practice in other DBMS.

The disadvantage of the design is that a cold restart of the database server requires re-reading the
entire transaction log: some countervailing measures are (1) using a multi-database design since
Pyrrho supports multi-database connections, (2) the technique of partition sequencing discussed in
chapter 10.

YŜȅ ŦŜŀǘǳǊŜǎ ƻŦ tȅǊǊƘƻΩǎ ŘŜǎƛƎƴ

In Chapter 9 we will consider an approach to distributed databases where a server can play any or all
of three roles in relation to a particular database: storage, transaction serialisation, and query
processing. Storage is basically the transaction log or a copy (the physical database or PhysBase),
transaction serialisation is when a set of proposed changes are appended to the master copy of the
transaction log, and for query processing, the server needs to have the indexes and database objects
(implemented in the logical Database class).

During a transaction, the database connection is to a set of LocalTransactions (or proxies) that are
based on Database snapshots. Each has access to the physical layer for fetching data from base tables,
using a subclass of the PhysBase (for example, the VirtBase class) that also contains the new
information that will be added if the transaction commits.

The above considerations lead to the following feature set for Pyrrho.

1. Transaction commits correspond one-to-one to disk operations: completion of a transaction is
accompanied by a force-write of a database record to the disk. There is a 5-byte end-of-file
marker6 which is overwritten by each new transaction, but otherwise the physical records once
written are immutable. Deletion of records or database objects is a matter for the logical database,
not the physical database. This makes the database fully auditable: the records for each
transaction can always be recovered along with details about the transaction (the user, the
timestamp, the role of the transaction).

2. Because data is immutable once recorded, the physical position of a record in the data file (its
άŘŜŦƛƴƛƴƎ Ǉƻǎƛǘƛƻƴέύ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ƛŘŜƴǘƛŦȅ ŘŀǘŀōŀǎŜ ƻōƧŜŎǘǎ ŀƴŘ ǊŜŎƻǊŘǎ ŦƻǊ ŀƭƭ ŦǳǘǳǊŜ ǘƛƳŜ όŀǎ
names can change). Needless to say, the current structure of the database object, or the current
values of a record, may well depend on subsequent data, which should be examined for relevant
alterations and updates (or even drops and deletes). Pyrrho threads together the physical records
that refer to the same defining position to facilitate backward searching in the database file and
forward searching in the corresponding memory structures.

6 The end-of-file marker includes a kind of digital signature to guard against tampering with the database
contents.

The Pyrrho Book (May 2015)

нн

3. Data structures in the higher levels of the database are frequently built from immutable elements.
For example, if an entry in a list is to be changed, what happens at the data structure level is that
a replacement element for the list is constructed and a new list descriptor which accesses the
modified data, while the old list remains accessible from the old list descriptor. In this way creating
a local copy or snapshot of the database (which occurs at the start of every transaction) consists
merely to making a new header for accessing the lists of database objects etc. As the local
transaction progresses, this header will point to new headers for these lists (as they are modified).
If the transaction aborts or is rolled back, all of this data can be simply forgotten, leaving the
database unchanged. With this design total separation of concurrent transactions is achieved, and
local transactions always see consistent states of the database.

4. When a local transaction commits, however, the database cannot simply be replaced by the local
transaction object, because other transactions may have been committed in the meantime. If any
of these changes conflict with data that this transaction has read (read constraints) or plans to
modify (transaction conflict), then the transaction cannot be committed. If there is no conflict, the
physical records proposed in the local transaction are relocated onto the end of the database.
Thus the defining positions of any new data will be different from those created in memory for
the local transaction: the entire local transaction structure is therefore forgotten even in the case
of a successful commit. Instead, the database is updated by reading the new records back from
the disk (or disk cache). Thus all changes are applied twice ς once in the local transaction and then
after transaction commit ς but the first can be usefully seen as a validation step, and involves
many operations that do not need to be repeated at the commit stage: evaluation of expressions,
check constraints, execution of stored procedures etc.

5. These approaches to the design have some strange effects. For example, any data structures that
are not transaction-specific must avoid maintaining pointers to the logical level structures such as
Table, TableColumn, since these may no longer be current for the next transaction. The current
versions must be obtained afresh from the Database data structure, either by name or by defining
position as appropriate.

6. Because of transaction separation, checking for transaction conflicts cannot be done at the level
of the logical database (Level 3). It is done at the physical level (Level 2), with the help of a set of
rules for what constitutes a conflict. Data relating to read constraints needs to be passed down to
level 2 in a special data structure since these do not correspond to proposed changes to the
database.

7. Data recorded in the database is intended to be non-localised (e.g. it uses Unicode with explicit
character set and collation sequence information, universal time and date formats), and machine-
independent (e.g. no built-in limitations as to machine data precision such as 32-bit). Default value
expressions, check constraints, views, stored procedures etc are stored in the database in
SQL2011 source form and reparsed when required. This has the advantage that changes
consequential on renaming of objects can be supported at the logical database level, where the
edits can be applied to the source forms in memory.

8. The database implementation uses B-Trees throughout (note: B-Trees are not binary trees). Lazy
traversal of B-Tree structures (enumeration) is used throughout the query processing part of the
database. This brings dramatic advantages where search conditions can be propagated down to
the level of B-Tree traversal.

9. Database values are strongly typed (TypedValues), but during query processing the server works
with SqlValues, which are expressions obtained from the query language. An SqlValue can be
evaluated in a Context, to get a TypedValue. Thus a Query is a context whose RowSet is a row of
SqlValues (an SqlRow) with a RowEnumerator which modifies the values of the row columns as it
moves. This matches well with the top-down approach to parsing and query processing that is
used throughout Level 4 of the code.

The Pyrrho Book (May 2015)

но

10. The aim of SQL query processing is to bridge the gap between bottom-up knowledge of
traversable data in tables and joins (e.g. columns in the above sense) and top-down analysis of
value expressions. Analysis of any kind of query goes through a set of stages: (a) source analysis
to establish where the data is coming from, (b) selects analysis to match up references in value
expressions with the correct columns in the sources, (c) conditions analysis which examines which
search and join conditions can be handled in table enumeration, (d) ordering analysis which looks
not only at the ordering requirements coming from explicit ORDER BY requests from the client but
also at the ordering required during join evaluation and aggregation, and finally (e) RowSet
construction, which in many cases can choose the best enumeration method to meet all the above
requirements.

11. As a practical matter it is convenient to allow multi-database connections. For example this
facilities analysis or modelling of a database using temporary tables, without adding such
temporary tables to the business database. However, if a transaction in such a connection causes
changes to more than one database, this causes a permanent linkage recorded in both databases:
and all linked databases must always continue to be available to any server that is using any of
them. While such multi-database transactions are supported, they should be avoided if possible.

12. Despite all of these rich possibilities, it remains the case that almost all servers, databases,
transactions and queries will be performed locally with small amounts of data. Most databases
will also be small enough to fit comfortably into the 4GB or so RAM available today on PCs, and
1TB RAM is now available on blade servers. NevertƘŜƭŜǎǎΣ tȅǊǊƘƻΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŦƛƭŜǎ ŀƭƭƻǿ
database tables and their indexes to be partitioned among a set of servers, so that joins and data
selected from them can be constructed on other servers. We return to these ideas in chapters 9
and 10.

The Pyrrho Book (May 2015)

нп

/ƘŀǇǘŜǊ оΥ 5ŀǘŀōŀǎŜ 5ŜǎƛƎƴ

The physical layer of a relational database consists of a set of named base tables, whose columns
contain values drawn from prescribed sets of values (domains). Standard domains include integers,
fixed- and floating point numbers, strings of various kinds, dates, times etc. At the layer above this the
data in some of these base tables are seen as specifying entities and relations: so that the rows of base
tables are seen to give details of unique individual objects identified by primary keys (first normal
form), and with relationships to other entities defined in other tables.

At the level above this we have the business model where these entities and their relationships serve
a business purpose.

As mentioned in the introduction, the rules of Normal Form are intended to make it easier to maintain
the consistency of data in the database as modifications are made to it. For example, if the same
information is contained in several rows of a table, it becomes difficult to change any of these rows
consistently, and if we are allowed to update some of the repeated data without updating it all at
once, there is an obvious danger that some data will be left unchanged (update anomaly). Second and
third normal forms ensure at least that such repeated information is no more than coincidence.

If a row of a table aims to provide too much information, it can happen that at the point of inserting
a new entry we are unable to provide information in all of the cells (insertion anomaly). And if some
information is removed from the database, but is referred to elsewhere, we have a deletion anomaly.
Foreign key relationships can help avoid deletion anomalies.

However, it is not really the job of the database engine to be prescriptive about such matters, merely
to provide the tools that the database designers want. There are certain expectations about the
standard data types that are supported and their interpretation in various cultures: dates can be
represented in different timezones, international character sets and collation sequences should be
used, national standards for dates, currencies etc. It should be possible for a column to contain values
of a user-defined type (e.g. with subfields) or an array. We will return to some of these aspects in later
sections.

оΦм /ƻƴǎǘǊŀƛƴǘǎ

It should be possible to apply a domain constraint, e.g. to specify that a number should be in a certain
range, or have a default value. It should be possible in addition to specify a constraint for a column, or
an automatic rule to generate the value of a column based on other attributes. Several popular ways
of getting the database to generate a primary key for a new row are available. It should be possible to
specify a constraint for a table, for example that all values of a particular column are found in the table.

The SQL standard imposes many restrictions on the expressions used to define such constraints, and
these are enforced to a greater or lesser degree by different databases. Pyrrho allows any search
condition to be used as a column or table constraint, and allows such constraints to be modified later.
However, it prevents adding a constraint that is not currently satisfied by data in the table, and does
not allow any operation (not even a step in a transaction) that violates any constraint.

9ȄŀƳǇƭŜ м ŘŀǘŀōŀǎŜ

The PyrhoSvr should already be running.

Start up a command window using the command

The Pyrrho Book (May 2015)

нр

PyrrhoCmd Bank

Paste the following text into the PyrrhoCmd window at the SQL> prompt (on Windows, right-click
the title bar and select Edit>Paste):

[create table accounts(accno int primary key,
balan ce numeric(6,2),
custname char,
constraint sufficient_funds check (balance>=0))]

insert into accounts values (101,456.78,'Fred')

insert into accounts values (103,682.91,'Joe')

table accounts

The output should look similar to the following:

оΦн tȅǊǊƘƻΩǎ ƭƻƎǎ ŀƴŘ ǎȅǎǘŜƳ ǘŀōƭŜǎ

Examine the log.7 Apart from the DOS window wraparound, it looks like this:
SQL> table " Log$ "
---	-- ----------	------------	-------	-----------
Pos	Desc	Type	Affects	Transaction
---	--	----- -------	-------	-----------
4	PRole Bank	PRole	0	- 1
32	PUser MALCOLM - NB\ Malcolm	PUser	32	- 1
55	PTransaction for 9 Role=4 User=32 Time=10/02/2013 16:27:15	PTransaction	0	0
71	PTable ACCOUNTS	PTable	71	55
84	PDomain INTEGER: INTEGER	PDomain	84	55
106	PDomain NUMERIC%6_2: NUMERIC,P=6,S=2	PDomain	106	55
134	PDomain CHAR: CHAR	PDomain	134	55
152	PColumn ACCNO for 71(0)[84]	PColumn3	152	55
174	PIndex U(56) on 71(152) PrimaryKey	PIndex	174	55
195	PColumn BALANCE for 71(1)[106]	PColumn3	195	55
220	PColumn CUSTNAME for 71(2)[134]	PColumn3	220	55
247	Check SUFFICIENT_FUNDS [71]: (balance>=0)	PCheck	71	55
284	PTransaction for 1 Role=4 User=32 Time=10/02/2013 16:27: 15	PTransaction	0	0
300	Record for 71 ([152] 101:INTEGER)([195] 456.78:NUMERIC,P=6,S=2)([220] Fred:CHAR)	Record	300	284
334	PTransaction for 1 Role=4 User=32 Time=10/02/2013 16:27:15	PTransaction	0	0
350	Record for 71 ([152] 103:INTEGER)([195] 682.91:NUMERIC,P=6,S=2)([220] Joe:CHAR)	Record	350	334
---	--	------- -----	-------	-----------
SQL>

Pyrrho identifies everything in the database by its defining position Pos. When the database is first
ŎǊŜŀǘŜŘ ŀ ŘŜŦŀǳƭǘ ά{ŎƘŜƳŀέ ǊƻƭŜ ŀƴŘ ǘƘŜ ƻǿƴŜǊ ŀǊŜ ǊŜŎƻǊŘŜŘ όƘŜǊŜ ŀǘ tƻǎ п ŀƴŘ онύΦ ¢ƘŜǎŜ ŀǊŜ ǘƘŜ
only records that do not have transaction information. Then we see 3 transactions corresponding to
the three SQL commands issued so far. Each transaction records the use, the role and the timestamp.

The last two transactions are the Insert statements (of type Record). The first transaction defines the
accounts table and you can see the steps involved in setting up the three domains and the three
columns.

¢ƘŜ ά[ƻƎϷέ ǘŀōƭŜ ƛǎ ƻƴŜ ƻŦ ŀ ƎǊŜŀǘ Ƴŀƴȅ ǎȅǎǘŜƳ ǘŀōƭŜǎΣ ǘƘŀǘ ŀƭƭƻǿ ǘƘŜ {v[ŜƴƎƛƴŜ ǘƻ ŜȄŀƳƛƴŜ ǘƘŜ
database history. There are tables whose names begin with Log$ that are a historical record, while the
system tables, beginning with Sys$ or Role$ show the current database objects.

7 The idea that all internals of the database engine should be exposed in relational tables is a consequence of
/ƻŘŘΩǎ όмфурύ ǇǊƛƴŎƛǇƭŜǎΦ {ƛƴŎŜ tȅǊǊƘƻΩǎ ǘǊŀƴǎŀŎǘƛƻƴ ƭƻƎǎ ŀǊŜ ŘǳǊŀōƭŜΣ ŀƭƭ ǘƘŜƛǊ Řetails are exposed in system
tables. See Appendix 8.

The Pyrrho Book (May 2015)

нс

A particularly useful one is Role$Table:
SQL> table "Role$Table"
| --- | -------- | ------- | ---- | -------- | ----- ----------- | ---------- | ------ | ----- |
Pos	Name	Columns	Rows	Triggers	CheckConstraints	References	RowIri	Owner
71	ACCOUNTS	3	2	0	1	0		Bank
---	--------	-------	----	--------	----------------	----------	------	-----
SQL>

This records the current name of table 71 as ACCOUNTS, and shows it currently has 2 rows.

Note that the script we used for creating the table was all in lower case. The SQL standard says that
unquoted identifiers are not case-sensitive. If you want case-sensitivity or special characters you need
to double-ǉǳƻǘŜ ǘƘŜ ƛŘŜƴǘƛŦƛŜǊΣ ŀǎ ǿŜ ŘƛŘ ǿƛǘƘ ά[ƻƎϷέΦ

There are some notes on this aspect of the design of Pyrrho DBMS at the end of this chapter.

9ȄŀƳǇƭŜ н /І ŀǇǇƭƛŎŀǝƻƴ

Let us write a simple application that uses this database. This one uses
Windows Forms for simplicity. To create it from scratch, start up Visual
Studio and select New Project>Visual C#>Windows>WPF Application.
Add a Reference to PyrrhoLink.dll.

Add user interface elements as shown (I used a StackPanel instead of a
Grid for the main window and used horizontal and vertical StackPanels
for the detail of the groups). You can see my solution in the resources
for this text.

The beginning of the code for the application shows how it works. Note
the declaration of the PyrrhoConnection and the code for creating and
opening the connection (highlighted in yellow).

When we need data from the database, we use ADO.NET incantations,
one example is highlighted in green. The transaction to do the funds transfer is highlighted in grey,
and notice how it is surrounded with an exception handler.
using Pyrrho;

namespace WpfApplication2
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 PyrrhoConnect db = null ;
 public MainWindow()
 {
 InitializeComponent();
 db = new PyrrhoConnect ("Files=Bank");
 db.Open();
 Account2.Visibility = Visibility .Hidden;
 }
 class AcInfo
 {
 public int id;
 public string name;
 public AcInfo(int i, string n) { id = i; name = n; }
 public override string ToString()
 {
 return name;
 }
 }
 AcInfo selected = null ,other = null ;
 private void Account1_DropDownOpened(object sender, EventArgs e)
 {
 var cmd = db.CreateCommand();

The Pyrrho Book (May 2015)

нт

 cmd.CommandText = "select accno, custname from accounts" ;
 Account1.Items.Clear();
 var rdr = cmd.ExecuteReader();
 while (rdr.Read())
 Account1.Items.Add(new AcInfo (rdr .GetInt32(0), rdr.GetString(1)));
 rdr.Close();
 }

 private void Account1_SelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 selected = Account1.SelectedItem as AcInfo ;
 if (selected != null)
 {
 var cmd = db.CreateCommand();
 cmd.CommandText = "select balance from accounts where accno=" + selected.id;
 var rdr = cmd.ExecuteReader();
 if (rdr.Read())
 Amount.Text = "" + rdr[0];
 rdr.Close();
 }
 else
 Amount.Text = "0.00" ;
 CancelButton.IsEnabled = true ;

 }
 private void Account2_DropDownOpened(object sender , EventArgs e)
 {
 if (selected != null)
 {
 var cmd = db.CreateCommand();
 cmd.CommandText = "select accno, custname from accounts" ;
 Account2.Items.Clear();
 var rdr = cmd.ExecuteReader();
 while (rdr.Read())
 if (rdr.GetInt32(0)!=selected.id)
 Account2.Items.Add(new AcInfo (rdr.GetInt32(0), rdr.GetString(1)));
 rdr.Close();
 }
 }

 private void OKButton_Click(object sender, RoutedEventArgs e)
 {
 AcInfo sub = ((bool)PayOut.IsChecked) ? selected : ((bool)PayIn.IsChecked) ? other : null ;
 AcInfo add = ((bool)PayIn.IsChecked) ? selected : ((bool)PayOut.IsChecked) ? other : null ;
 try
 {
 var tr = db.BeginTransaction();
 var cmd = db.CreateCommand();
 if (sub != null)
 {
 cmd.CommandText = "update accounts set balance = balance - " + Amount.Text + " where
accno=" + sub.id;
 cmd.ExecuteNonQuery();
 }
 if (add != null)
 {

The Pyrrho Book (May 2015)

ну

 cmd.CommandText = "update accounts set balance = balance+" + Amount.Text + " where
accno=" + add.id;
 cmd.ExecuteNonQuery();
 }
 tr.Commit();
 Balance.IsChecked = true ;
 Cash.IsChecked = true ;
 Account2.Select edIndex = - 1;
 Account1_SelectionChanged(sender, null);
 }
 catch (Exception ex)
 {
 Status.Content = ex.Message;
 }

}

For reasons of space the UI code is omitted here.

Examination of the code above is for most purposes a sufficient
introduction to the ADO.NET API. The only aspect that is not obvious is that you can only have one
DataReader open per connection: this is an ADO.NET restriction. If you have a single connection, and
you open a DataReader with rdr=cmd.ExecuteReader(), then you must call rdr.Close() before you open
another reader. (You can have several connections open but in that case you are not guaranteed that
they will see exactly the same data as they have started at different times.)

оΦп ¢ƘŜ WŀǾŀ [ƛōǊŀǊȅ

The Pyrrho Java Connector OSPJC and the org.pyrrhodb.* package have been significantly modified as

of April 2015. In earlier versions of Pyrrho there was an attempt to allow client applications to define

the data model unilaterally using Java annotations, in the manner specified for javax.org. From around

ǾŜǊǎƛƻƴ пΦр ǘƘƛǎ Ƙŀǎ ǊŜŀƭƭȅ ōŜŜƴ ǳƴǘŜƴŀōƭŜΣ ŀƴŘ ŀƴƴƻǘŀǘƛƻƴǎ ǘƘŀǘ ŘƛŦŦŜǊ ŦǊƻƳ ǘƘŜ ŘŀǘŀōŀǎŜΩǎ ƛƳǇƭƛŜŘ

data model will in future be reported as errors.

The library is contained in OSPJC\bin in the Open Source Distribution of Pyrrho. It is best to copy this

folder to where your Java project is and compile and execute with

javac Ƶcp . xxxx.java

java Ƶcp . xxxx

Some features of JDBC 4.1 are completely incompatible with the architecture of PyrrhoDB (and the

SQL2011 standard) and thus are unlikely to be incorporated at any stage. These include the

DriverManager class, the SQLPermission class, PreparedStaments and their parameters, DataSources

and Savepoints. The assumption is that clients open a Connection to a database, and use Statements

and ResultSets to manipulate the database.

On the other hand, the intention is that entities specified as such in the database metadata should be

retrievable using strongly-typed (generic) client-side methods with the help of reflection. Specifically,

single-entity short cuts from Connection will lead to generic versions of first() and next() that

automatically populate the public fields of specified entity classes.

import org.pyrr hodb.Connection;
import java.sql.Statement;
import java.sql.ResultSet;

public class JCTest
{
 static Connection conn;
 public static void main(String args[]) throws Exception
 {
 conn = Connection.getConnection ("localhost","def","guest","def");

The Pyrrho Book (May 2015)

нф

 CreateTable();
 ShowTable();
 }

 static void CreateTable() throws Exception
 {
 try {
 conn.act("drop table a");
 } catch (Exception e) {}
 conn.act("create table a(b int,c char)");
 conn.act("insert into a values(1,'One'),(2,'Two')");
 }
 static void ShowTable()
 {
 try {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select * from a");
 for (boolean b = rs.first();b;b=rs. next())
 {
 System.out.println(""+rs.getInt("B")+"; "+rs.getString("C"));
 }
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
}

оΦр {²LπtǊƻƭƻƎ

The Open Source Edition of Pyrrho also comes with some support for SWI-Prolog. This is contained in

a module pyrrho.pl which is part of the distribution. The code is at an early stage, so comments are

welcome. The following documentation uses the conventions of the SWI-Prolog project.

The interface with SWI-Prolog is implemented by providing SWI-Prolog support for the Pyrrho protocol

(see technical details in the Pyrrho manual). The following publicly-visible functions are currently

supported:

connect(-Conn,

+ConnectionString)

Establish a connection to the Open Source Pyrrho

server. Conn has the form

conn(InStream,InBuffer,OutStream,OutBuffer). Codes

in OutBuffer are held in reverse order.

sql_reader(+Conn0, -Conn1,

+SQLString, -Columns)

Like ExecuteReader on the connection. Conn0. Conn1

is the updated connection. Columns is a list of entries

of form column(Name,Type) .

read_row(+Conn0,-

Conn1,+Columns,

 -Row)

Reads the next row (fails if there is no next row) from

the connection Conn0. Conn1 is the updated

connection. Columns is the column list as returned

from sql_reader. Row is a list of corresponding values

for the current row.

close_reader(+Conn) Closes the reader on connection Conn.

field(+Columns,+Row,+Name,-

Value)

Extracts a named value from a row. The atom null is

used for null values.

The Pyrrho Book (May 2015)

ол

оΦс [Lbv

Language-Integrated Query was an innovation in C# 3.0. Linq allows queries of the sort

var query1 = from t in things where t.Cost > 300 select new {

t.Owner.Name, t.Cost };

to be written directly in C#.

The Pyrrho support for Linq is therefore inspired by the idea of supporting queries to simple small

databases, and avoiding declarations and annotations wherever possible. The client-side objects can

be modified using the methods in sec A9.6 but queries should always be to a new connection. The

Linq support is only for single-component primary keys (they can be any scalar type and do not have

ōŜ ŎŀƭƭŜŘ άLŘέύΦ

The following complete program works with a database called home, which contains two tables with

the following structure:

create table "Person" ("Id" int primary key, "Name" char, "City" char,"Age" int)

ŎǊŜŀǘŜ ǘŀōƭŜ Ϧ¢ƘƛƴƎϦ όϦLŘϦ ƛƴǘ ǇǊƛƳŀǊȅ ƪŜȅΣϦhǿƴŜǊϦ ƛƴǘ ǊŜŦŜǊŜƴŎŜǎ άtŜǊǎƻƴέΣ Ϧ/ƻǎǘϦ ƛƴǘΣ Ϧ5ŜǎŎǊϦ ŎƘŀǊύ

Then the Role$Class system table (see Appendix 8) provides text for the two class definitions as

below.The PyrrhoConnect connects to the database as usual, and the database is opened. Two

PyrrhoTable<> declarations form a link between client side data and data in the home database. Then

the LINQ machinery is available. (For the program to produce output, there needs to be some data in

the tables.)

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Pyrrho;

namespace ConsoleApplication1

{

/// <summary>

/// Class Person from Database home, Role home

/// </summary>

public class Person {

 public System. Int64 Id; // primary key

 public System. String Name;

 public System. String City;

 public System. Int64 Age;

}

/// <summary>

/// Class Thing from Database home, Role home

/// </summary>

public class Thing {

 public System. Int64 Id; // primary key

 public Person Owner;

 public System. Int64 Cost;

 public System. String Descr;

}

 class Program

 {

 static void Main(string [] args)

 {

 // Data source.

 PyrrhoConnect db = new PyrrhoConnect ("Files=home");

 db.Open();

 // constructs an index for looking up t.Owner as a side effect

 var people = new PyrrhoTable <Person >(db);

 var things = new PyrrhoTable< Thing >(db);

 // Query creation.

The Pyrrho Book (May 2015)

ом

 var query1 = from t in things where t.Cost > 300 select new { t.Owner.Name, t.Cost

};

 // Query execution.

 foreach (var t in query1)

 Console .WriteLine(t.ToString());

 var query2 = from p in people

 select new { p.Name, Things= from t in things

 where t.Owner.Id == p.Id select t};

 foreach (var t in query2)

 {

 Console .WriteLine(t.Name + ":");

 foreach (var u in t.Things)

 Console .WriteLine(" " + u.Descr);

 }

 db.Close();

 }

 }

}

оΦт 5ƻŎǳƳŜƴǘǎ

5ŀǘŀōŀǎŜǎ ƻǳǘƭŀǎǘ ƘŀǊŘǿŀǊŜ ŀƴŘ ǎƻŦǘǿŀǊŜ ǇƭŀǘŦƻǊƳǎΦ aŀƴȅ άƭŜƎŀŎȅέ ŘŀǘŀōŀǎŜ ǎȅǎǘŜƳǎ ǎǘƛƭƭ ŀǊŜ ƛƴ ǳǎŜ
today after 50 years. Databases need to be designed for interoperability, so that the data formats will
still make sense years from now. In laboratories we have been looking at how databases can be
accessed from a variety of languages and systems. In the labs, we have been using Windows systems,
but as many of you will know, the computing industry has been very careful to ensure that systems
can work together over the Internet.

TCP/IP is a good start and helps overcome many difficulties by enabling clients and servers to
communicate. Java and PHP are available on all platforms, and even C# is available on Linux if the
Mono runtimes are installed.

In particular, we have looked at how the very different worlds of .NET and PHP can communicate.
There are many examples today of non-ǊŜƭŀǘƛƻƴŀƭ ŀƴŘ άbƻ{v[έ ŘŀǘŀōŀǎŜ ǎȅǎǘŜƳǎΦ !ƭƭ ƻŦ ǘƘŜǎŜ ŦƻǊ

various reasons depart from the standard SQL and relational database design. Some of these issues

were discussed earlier in this course.

The point of view strongly expressed in this book is that relational DBMS offer a valuable general-

purpose data management infrastructure, and that their most valuable benefits are the ACID

properties, especially consistency and durability.

One of the more interesting NoSQL databases today is MongoDB. MongoDB provides schema-less

data management for JSON-ƭƛƪŜ άŘƻŎǳƳŜƴǘǎέ ƛŘŜƴǘƛŦƛŜŘ ōȅ ŀ ǎǇŜŎƛŀƭ ψƛŘ ƪŜȅΣ ŀƴŘ ǘƘŜǊŜ ŀǊŜ ǎƻƳŜ ƴƻǘŜǎ

in the following based on the documentation available on https://www.mongodb.com/ .

To select a document from a MongoDB collection, a query consists of a Json object with a set of key-

value pairs: the result set is the set of documents in the collection that match these properties. The

properties are not limited to equality conditions. This is a very powerful and attractive way of selecting

data from large distributed collections, and much to be preferred over standard SQL in many cases.

Mongo does not use SQL, does not support transactions (it does claim strict consistency) and does not

have mechanisms for creating joins. I have begun to develop a MongoDB service offered by the Pyrrho

server that when complete will offer full ACID guarantees on top of the full Mongo service. It will do

this by running on the Pyrrho database engine, enhanced as necessary.

The enhancements turn out to be very exciting as extensions to SQL. SQL already allows columns in

relational tables to contain structured types and XML data. It is exciting to allow integrity and

https://www.mongodb.com/

The Pyrrho Book (May 2015)

он

referential constraints to apply to fields within such structured objects. For example, in any document

collection the _id key is the primary key: it is a field within the JSON object.

²ƛǘƘ /ƻŘŘΩǎ ǇǊƛƴŎƛǇƭŜǎ ƛƴ ƳƛƴŘΣ tȅǊǊƘƻ ŀƭƭƻǿǎ ŜȄǘŜƴǎƛƻƴǎ ǘƻ {v[ǘƻ ǎǳǇǇƻǊǘ ŜƳōŜŘŘŜŘ W{hbΣ ǎƻ ǘƘŀǘ

anything that can be done using the Mongo service can also be done using the resulting extended SQL,

including the construction of document sets.

CƛǊǎǘ ǎǘŜǇǎ ƛƴ tȅǊǊƘƻ

Pyrrho provides a MongoDB service, but the PyrrhoCmd client does not have the verbs such as find(),
remove() etc. For simplicity we will allow PyrrhoCmd to be used by extending SQL a bit.

[ŜǘΩǎ ŀƭƭƻǿ {v[ǎȅƴǘŀȄ ǘƘŀǘ ǎǳǇǇƻǊǘǎ ŘƻŎǳƳŜƴǘǎΣ beginning with DOCUMENT as a standard type:

create table people(doc document)

We ǿƻƴΩǘ ǎǇŜŎƛŦȅ ǇǊƛƳŀǊȅ ƪŜȅ όŘƻŎΦψƛŘύ ŀǎ ǘƘƛǎ ƛǎ ǘƘŜ ŘŜŦŀǳƭǘΦ ¢ŀƪƛƴƎ ǘƘŜ ŜȄŀƳǇƭŜ ŦǊƻƳ ǇŀƎŜ тΥ

insert into people values ({NAMEΥ άǎǳŜέΣ AGE: 26, STATUS: έ!έΣ GROUPS: ώάƴŜǿǎέΣ έǎǇƻǊǘǎέϐϒύ

That is, we allow Json literals in value lists. Any document can be added to this people table. (Alas,
Mongo is case sensitive so we need capitals here or else we need double quotes below). For the query
ŜȄŀƳǇƭŜ ǘƘŀǘ Ŧƻƭƭƻǿǎ ƻƴ ǇŀƎŜ тΣ ƭŜǘΩǎ ŀƭƭƻǿ almost standard SQL

select doc from people where doc.age>18 order by doc.age

where we allow the standard dot notation in SQL to take us into the fields of documents. We will of
ŎƻǳǊǎŜ ǎǳǇǇƻǊǘ aƻƴƎƻ5.Ωǎ ƭŀǊƎŜ ŎƻƭƭŜŎǘƛƻƴ ƻŦ ǎǇŜŎƛŀƭ ƻǇŜǊŀǘƻǊǎ ŀƴŘ ŎƻƴǎǘǊǳŎǘǎΦ With these we can
rewrite the above query in an alternative form:

select * from people where doc={age: {$gt: 18}} order by doc.age

From this we can begin to see how complex search conditions can be pushed down to remote
partitions. We can even allow Mongo5.Ωǎ ŜȄǇƭƛŎƛǘ ǇƛǇŜƭƛƴŜǎΥ

select {aggregate: people, pipeline: [{ $match: {age: {$gt: 18} },
{$group: {_id: $age, count: {$sum: 1}}},
{$sort: { age: 1 }}] } from static

In such expressions Mongo uses $ in value expressions to refer to other fields, e.g. { a: $x } would set
field a to the value of field x. We also see here that we can get select expressions to construct new
documents for us. In simple cases the resulting documents look like the one in the select statement,
but with all these special operators in this case the resulting document looks like the following:

ϑ ψƛŘΥΧΣ ǾΥмΣ ƻƪΥ ǘǊǳŜΣ ǊŜǎǳƭǘΥ ώϑ ŀƎŜΥ мфΣ ŎƻǳƴǘΥ п ϒΣϑŀƎŜΥ нлΣ ŎƻǳƴǘΥ о ϒΣϑŀƎŜΥнпΥΣ ŎƻǳƴǘΥмϒϐϒ

Updates are actually quite complex in MongoDB, and the use of special operators is inescapable. For
example the $set operator is used to add fields to a document. In Pyrrho we can allow

update people set doc = {$set: { frƛŜƴŘΥ άCǊŜŘέ ϒϒ ǿƘŜǊŜ ŘƻŎΦƴŀƳŜҐΩǎǳŜΩ

Use these forms to explore the mappings given in the Mongo-DB documentation.

оΦу tȅǊǊƘƻ 5.a{ ƭƻǿ ƭŜǾŜƭ ŘŜǎƛƎƴ
In this section we discuss some of the fundamental data structures used in the DBMS. The data
structures in this section have been chosen because they are sufficiently complex or unusual to require
such discussion. Obviously this section can be skipped at a first or even later reading.

The Pyrrho Book (May 2015)

оо

.π¢ǊŜŜǎ

Almost all indexing and cataloguing tasks in the database are done by BTrees. These are basically
sorted lists of pairs (key,value), where key is comparable. In addition, sets and partial orderings use a
degenerate sort of catalogue in which the values are not used (and are all the single value true).

There are several subclasses of BTree used in the database: Some of these implement multilevel
indexes. BTree itself is a subclass of an abstract class called ATree. The BTree class provides the main
implementation. These basic tree implementations are generic, and require a type parameter, e.g.
BTree<long,bool> . The supplied type parameters identify the data type used for keys and values.
BTree is used when the key type is a value type. If the key is a class type, CTree is used instead. In both
cases the Key type must implement IComparable.

The B-Tree is a standard, fully scalable mechanism for maintaining indexes. B-Trees as described in
textbooks vary in detail, so the following account is given here to explain the code.

A B-Tree is formed of nodes called Buckets. Each Bucket is either a Leaf bucket or an Inner Bucket. A
Leaf contains up to N pairs (called Slots in the code). An Inner Bucket contains Slots whose values are
pointers to Buckets, and a further pointer to a Bucket, so that an Inner Bucket contains pointers to
bҌм .ǳŎƪŜǘǎ ŀƭǘƻƎŜǘƘŜǊ όάŀǘ ǘƘŜ ƴŜȄǘ ƭŜǾŜƭέύΦ Lƴ ŜŀŎƘ .ǳŎƪŜǘ ǘƘŜ {ƭƻǘǎ ŀǊŜ ƪŜǇǘ ƛƴ ƻǊŘŜǊ ƻŦ ǘƘŜƛǊ ƪŜȅ
values, and the Slots in Inner buckets contain the first key value for the next lower-level Bucket, so
that the extra Bucket is for all values bigger than the last key. All of these classes take a type parameter
to indicate the key type.

The value of N in Pyrrho is currently 32: the performance of the database does not change much for
values of N between 4 and 32. For ease of drawing, the illustrations in this section show N=4.

The BTree itself contains a root Bucket
and some other data we discuss later.

The BTree dynamically reorganizes its
structure so that (apart from the root)
all Buckets have at least N/2 Slots, and
at each level in the tree, Buckets are
either all Inner or all Leaf buckets, so
that the depth of the tree is the same
at all values.

The basic operations on B-Trees are
defined in the abstract base class
ATree<K,V>:, ATree<K,V>.Add, ATree<K,V>.Remove etc. Static methods are used for most operations
because in almost all cases a new header structure is created if anything is modified (according to
principle 2.2.3). So, for example to add a new entry to a list of tables, we have code such as

CTree<.string,DBObject>.Add(ref tables, name, tb);

The basic format here is ATree<K,V>.Add(ref Tree, Key, Value) . For a multilevel index, Key can be a
Link (this is implemented in MTree and RTree, see section 3.2).

The following table shows the most commonly-used operations:

Name Description

long Count The number of items in the tree

object this[key] Get the value for a given key

bool Contains(key) Whether the tree contains the given key

SlotEnumerator<K,V>
GetRowEnumerator(..)

Enumerates the pairs in the B-tree

1 3 4 6 8

Root (inner)

Leaves

6 6

The Pyrrho Book (May 2015)

оп

static Add(ref T, Key, Value) For the given tree T, add entry Key,Value .

static Update(ref T, Key, Value) For the given tree T, update entry Key to be
Value

static Remove(ref T, Key) For the given tree T, remove the association
for Key.

Note that even where words like Update are used, any Tree is immutable: in particular the Update
operation returns a new Tree sharing many of its immutable elements with the old one.

Immutable trees of this sort are shareable. Pyrrho has two mutable B-Tree types: these are Multiset
and RTree. These are not shareable.

For multivalued tree types (see below) an additional parameter can be supplied to the last two
methods, e.g.

Static ATree<K,V>.Update(ref T,Key,OldValue,Value)

This replaces the association (Key,OldValue) with (Key,Value) (there may be other values for the
given Key).

¢ǊŜŜLƴŦƻ

There are many different sorts of B-Tree used in the DBMS. The TreeInfo construct helps to keep
track of things, especially for multilevel indexes (which are used for multicolumn primary and foreign
keys).

TreeInfo has the following structure:

Name Description

SqlDataType kType Defines the type of a compound key.

SqlDataType vType The type of values indexed using the tree.

TreeBehaviour onDuplicate How the tree should behave on finding a duplicate key. The
options are Allow, Disallow, and Ignore. A tree that allows
duplicate keys values provides an additional tree structure to
disambiguate the values in a partial ordering.

TreeBehaviour onNullKey How the tree should behave on finding that a key is null (or
contains a component that is null). Trees used as indexes
specify Disallow for this field.

int depth A shortcut for spec.Length

{ƭƻǘ9ƴǳƳŜǊŀǘƻǊғYΣ±Ҕ

Enumerating the entries of a tree is done using the SlotEnumerator class. Like any .NET IEnumerator

implementation, this has the following basic operations:

Name Description

bool MoveNext() move to the next entry if any: return false if there is no next entry

object Current this has the form Slot(CurrentKey,CurrentValue) here (but see
below)

void Reset() start the enumeration again

There are currently around 100 different SlotEnumerator implementations in the DBMS, including 26

special enumerators for system tables, and 32 for log tables, and 12 for joins of various sorts.

The Pyrrho Book (May 2015)

ор

The ATree method GetRowEnumerator returns a SlotEnumerator that traverses the pairs of the tree

in key order. There are two versions of this method, one of which supplies a Key for matching. This

will enumerator all pairs where the key matches the given one. Now for a strongly-ordered tree (no

key duplicates) the resulting enumeration will have 1 or zero entries (a TrivalEnumerator or an

EmptyEnumerator) provided the key supplied will be a constant.

This is a very subtle and important point: we will see later that we can have expressions whose values

changes as an enumerator advances. These are obviously not constant, and so if the Key value supplied

to GetRowEnumerator was such a value, while it would still be true that in each case there is either

one or zero matching pairs in the tree, we need to reset and re-enumerate the tree to find out which.

On the other hand, it is such an important optimisation to be able to replace an enumerator with a

trivial or empty enumerator that it seems worth adding some machinery to the database engine to

keep track of which expressions are constant. This is done using the extension method IsConstant,

(the static class defining this is called Varies, in the Common.cs source file).

Note that even long values might not be constant: a long value might be a record number or defining

address, which will advance during an enumeration.

!¢ǊŜŜғYΣ±Ҕ {ǳōŎƭŀǎǎŜǎ

The ATree class provides the basic tree implementation that is used by all the tree types in the DBMS.

It also provides a standard mechanism for enumerating the Keys and Values of a tree, which allows

ǘƘŜ ǳǎŜ ƻŦ /ІΩǎ ŦƻǊŜŀŎƘ ǎǘŀǘŜƳŜƴǘ ŦƻǊ {ƭƻǘǎΣ YŜȅǎ ŀƴŘ ±alues. Other implementations provide special

actions on insert and delete (e.g. tidying up empty nodes in a multilevel index).

The main implementation work is shared between the abstract ATree<K,V> and Bucket<K,V> classes
and their immediate subclasses.

There are just 5 ATree implementations:

Name BaseClass Description

BTree<K,V> ATree<K,V> The main implementation of B-Trees, for a one-level
key that is IComparable

CTree<K,V> ATree<K,V> A similar class where the key is a TypedValue

SqlTree CTree<TypedValue,
TypedValue>

For one-level indexes where the keys and values have
readonly strong types

MTree CTree<TRow,long?> For multilevel indexes where the value type is
Nullable<long>

RTree CTree<TRow,TRow> For multilevel indexes where the value type is a TRow:
Multisets are used for the final level in an RTree, and
so the RTree is not shareable.

LƴǘŜƎŜǊ

All integer data stored in the database uses a base-256 multiple precision format, as follows: The

first byte contains the number of bytes following.

#bytes (=n, say) data0 data1 Χ data(n-1)

data0 is the most significant byte, and the last byte the least significant. The high-order bit 0x80 in
data0 is a sign bit: if it is set, the data (including the sign bit) is a 256s-complement negative number,
that is, if all the bits are taken together from most significant to least significant, that data is an
ordinary 2s-complement binary number. The maximum Integer value with this format is therefore
22039-1 .

The Pyrrho Book (May 2015)

ос

Some special values: Zero is represented as a single byte (0x00) giving the length as 0. -1 is represented
in two bytes (0x01 0xff) giving the length as 1, and the data as -1. Otherwise, leading 0 and -1 bytes in
the data are suppressed.

Within the DBMS, the most commonly used integer format is long (64 bits), and Integer is used only
when necessary.

With the current version of the client library, integer data is always sent to the client as strings (of
decimal digits), but other kinds of integers (such as defining positions in a database, lengths of strings
etc) use 32 or 64 bit machine-specific formats.

The Integer class in the DBMS contains implementations of all the usual arithmetic operators, and
conversion functions.

5ŜŎƛƳŀƭ

All numeric data stored in the database uses this type, which is a scaled Integer format: an Integer
mantissa followed by a 32-bit scale factor indicating the number of bytes of the mantissa that
ǊŜǇǊŜǎŜƴǘ ŀ ŦǊŀŎǘƛƻƴŀƭ ǾŀƭǳŜΦ ό¢Ƙǳǎ ǎǘǊƛŎǘƭȅ ǎǇŜŀƪƛƴƎ άŘŜŎƛƳŀƭέ ƛǎ ŀ ƳƛǎƴƻƳŜǊΣ ǎƛƴŎŜ ƛǘ Ƙŀǎ ƴƻǘƘƛƴƎ ǘƻ
do with the number 10, but there seems no word in English to express the concept required.)

Normalisation of a Decimal consists in removing trailing 0 bytes and adjusting the scale.

Within the DBMS, the machine-specific double format is used.

With the current version of the client library, numeric data is always sent to the client in the Invariant
culture string format.

The Decimal class in the DBMS contains implementations of all the usual arithmetic operations except
division. There is a division method, but a maximum precision needs to be specified. This precision is
taken from the domain definition for the field, if specified, or is 13 bytes by default: i.e. the default
precision provides for a mantissa of up to 2103-1 .

/ƘŀǊŀŎǘŜǊ 5ŀǘŀ

All character data is stored in the database in Unicode UTF8 (culture-neutral) format. Domains and
ŎƘŀǊŀŎǘŜǊ ƳŀƴƛǇǳƭŀǘƛƻƴ ƛƴ {v[Ŏŀƴ ǎǇŜŎƛŦȅ ŀ άŎǳƭǘǳǊŜέΣ ŀƴŘ ǎǘǊƛƴƎ ƻǇŜǊŀǘƛƻƴǎ ƛƴ ǘƘŜ 5.a{ ǘƘŜƴ ŎƻƴŦƻǊƳ
to the culture specified for the particular operation.

The .NET library provides a very good implementation of the requirements here, and is used in the
DBMS. Unfortunately .NET handles Normalization a bit differently from SQL2011, so there are five
low-level SQL functions whose implementation is problematic.

5ƻŎǳƳŜƴǘǎ

From v.5.1 Pyrrho includes an implementation of Documents as in MongoDB. Assignment of
documents follows the MongoDB prescriptions, where $-operators determine how new data is
combined into the existing document. The same mechanism is implemented for Update records in the
database, so Document fields in Update records normally contain these operators, and Pyrrho
computes and caches the updated document when the Update is installed in the database.

Document comparison is implemented as matching fields: this means that fields are ignored in the
comparison unless they are in both documents (the $exists operator modifies this behaviour). This
simple mechanism can be combined with a partitioning scheme, so that a simple SELECT statement
where the where-clause contains a document value will be propagated efficiently into the relevant
partitions and will retrieve only the records where the documents match. Moreover, indexes can use
document field values.

The Pyrrho Book (May 2015)

от

Document matching recurses down to matching of fields, and then may involve comparisons of (say)
4 wƛǘƘ ϑΨϷƎǘΩΥоϒ Σ ǎƻ ŎŀǊŜ ƛǎ ǘŀƪŜƴ ƛƴ ǘƘŜ ŎƻŘƛƴƎ ǘƘŀǘ ǘƘƛǎ ƛǎ ƛƳǇƭŜƳŜƴǘŜŘ ŀǎ ŀ ŎƻƳǇŀǊƛǎƻƴ ƻŦ ϑΨϷƎǘΩΥоϒ
with 4 rather than the other way around, so that Document comparison occurs.

Documents are always retained in memory as in MongoDB, and during updates the modifying
Document is stored in the database, while the modified document is only in memory. The PhysBase
keeps track of the documents by indexes for (colpos,recpos)->Document and (ObjectId)->Document.

Documents in memory contain no reserved $ keys apart from $id. A document containing $id is a
DBRef, and when this is referenced the second index above is used to retrieve the referenced
document.

{ǉƭ5ŀǘŀ¢ȅǇŜ

Strong types are used internally for all transaction-level processing. The main mechanism for this is
the SqlDataType. It provides methods of input and output of data, parsing, coercing, checking
assignability etc.

Domain constraints are applied at Level 2, i.e. at the point where a a Record or Update is being
prepared for serialisation to the physical database, but they can use level 3 information (e.g. lookup
tables implemented using table references). Such dependencies are tracked using the referers list, so
that updates to the referenced tables may be restricted: for example where a column uses a domain,
a table uses a column, a type uses a record structure (defined by a table). Changes to domain types
therefore cascade through the in-memory data structures at level 2 when a schema change is read
from the physical media or prepared for serialisation.

This means that the Level 2 PhysBase has a default standardTypes structure that contains the names
standard types with domaindefpos marked as undefined. Obviously, this ATree structure gets updated
as standard types are reified in the PhysBase.

The SqlDataType structure also controls the fields (columns) of a structured type, the supertypes
(under) a data type has, and the order function that is used. It is possible to get hold of a SqlDataType
for a record by using the DataTypeTracker information in the PhysBase. This enables types with
custom orderings to be used for primary keys, since the indexes are constructed during database
loading. However, the actual names of columns and types are not considered part of the SqlDataType
(they are role-dependent, so are generated at the session level). For this reason, types with the same
name are not necessarily compatible, and error messages try to give numeric references in addition
to the names.

Because of custom orderings and role-based naming, at this level it is also possible to start parsing
(e.g. a procedure body), using the owner role for the functions and structures concerned.

Changes installed at level 3 of the database affect the SqlDataTypes. The DataTypeTracker currently
can be used to find the data type at a previous version of the database, as this is needed for reading
any data in the data file.

All SqlDataTypes used for persistent data are located in the PhysBase. They should not be stored
anywhere else. However, (a) during a transaction, each intermediate result has an SqlDataType (b)
each database knows what standard data types are persisted in that database. For rapid type
identification, SqlDataTypes can be looked up in two indexes: one for all types in use in the transaction
(ToString()->bool), and one for persisted types for each PhysBase known to the server: each PhysBase
has types (ToString()->defpos). (c) each role has an index of named domains defined in that role
namedDomains (name->defpos). Note that the CompareTo function for SqlDataTypes is based on
ToString() which does not include either pbname or defpos: thus SqlDataTypes can be considered
equal for assignment etc but may need to be reified for a particular database if the value is made
persistent.

The Pyrrho Book (May 2015)

оу

The following well-known standard types are defined by the SqlDataType class:

Name Description

Null The data type of the null value

Wild The data type of a wildcard for traversing compound indexes

Bool The Boolean data type (see BooleanType)

RdfBool The iri-defined version of this

Blob The data type for byte[]

MTree Multi-level index (used in implementation of MTree indexes)

Partial Partially-ordered set (ditto)

Char The unbounded Unicode character string

RdfString The iri-defined version of this

XML The SQL XML type

Int A high-precision integer (up to 2048 bits)

RdfInteger The iri-defined version of this (in principle unbounded)

RdfInt value>=-2147483648 and value<=2147483647

RdfLong value>=-9223372036854775808 and value<=9223372036854775807

RdfShort value>=-32768 and value<=32768

RdfByte value>=-128 and value<=127

RdfUnsignedInt value>=0 and value<=4294967295

RdfUnsignedLong value>=0 and value<=18446744073709551615

RdfUnsignedShort value>=0 and value<=65535

RdfUnsignedByte value>=0 and value<=255

RdfNonPositiveInteger value<=0

RdfNegativeInteger value<0

RdfPositiveInteger value>0

RdfNonNegativeInteger value>=0

Numeric The SQL fixed point datatype

RdfDecimal The iri-defined version of this

Real The SQL approximate-precision datatype

RdfDouble The iri-defined version of this

RdfFloat Defined as Real with 6 digits of precision

Date The SQL date type

RdfDate The iri-defined version of this

Timespan The SQL time type

Timestamp The SQL timestamp data type

RdfDateTime The iri-defined version of this

Interval The SQL Interval type

Collection The SQL array type

Multiset The SQL multiset type

UnionNumeric A union data type for constants that can be coerced to numeric or real

UnionDate A union of Date, Timespan, Timestamp, Interval for constants

The Pyrrho Book (May 2015)

оф

/ƘŀǇǘŜǊ пΥ 5ŀǘŀōŀǎŜ {ŜǊǾŜǊǎ

In this chapter, we look at the architecture of a database service from the viewpoint of the
communication between client and server. We will consider some alternative architectures along the
way.

пΦм {ŜǊǾŜǊǎ ŀƴŘ ǎŜǊǾƛŎŜǎ

The usual model of computing is that a great many processes (programs) are running on any computer
at any time. Under Windows or Linux around 50 processes have started up by the time you log in.
These are almost all services, some are part of the operating system and some are separate
executables called servers (in Windows the boundary is often blurred since DLLs are called operating
system extensions!).

Separate services are set up when something needs to be shared between processes (between users
on a multi-user system, or between tasks where several are running at the same time). What is shared
might be

¶ ŀ ǊŜǎƻǳǊŎŜΣ ǎǳŎƘ ŀǎ ŀ ǇǊƛƴǘŜǊ

¶ ŀ Řŀǘŀ ŬƭŜ

¶ ŀ ŎƻƳƳǳƴƛŎŀǝƻƴ ƎŀǘŜǿŀȅ ǎƻ ǘƘŀǘ ƳŜǎǎŀƎŜǎ ǘƻ ƻǊ ŦǊƻƳ ŘƛũŜǊŜƴǘ ǘŀǎƪǎ ƻƴ ǘƘŜ ŎƻƳǇǳǘŜǊ ŘƻƴΩǘ
ƎŜǘ ƧǳƳōƭŜŘ ǳǇ

Some resources (such as the processor, memory, devices) are shared directly inside the operating
ǎȅǎǘŜƳ ŀƴŘ ǘŀǎƪǎ ǊŜǉǳƛǊƛƴƎ ǘƘŜƳ ŀǊŜ ƪŜǇǘ ƛƴ ƴǳƳŜǊƻǳǎ ǉǳŜǳŜǎ ŦƻǊ άǎȅǎǘŜƳ ƭƻŎƪǎέΦ CƻǊ ŜȄŀƳǇƭŜΣ ƛƴ /І
a program needing a resource whose lock is called MyLock (say) will wrap a section of code with a
ŘŜŎƭŀǊŀǘƛƻƴ ǎǳŎƘ ŀǎ ƭƻŎƪόaȅ[ƻŎƪύ ϑ Χ ϒΣ ŀƴŘ ǘƘŜƴ ŜȄŜŎǳǘƛƻƴ Ƙŀƭǘǎ ŀǘ ǘƘŜ ƭƻŎƪ ǊŜǉǳŜǎǘ ǳƴǘƛƭ ǘƘŜ ǊŜǎƻǳǊŎŜ
is available, and the lock is released at the end of the critical section.

пΦн ¢/tκLt ǎŜǊǾƛŎŜǎ

For other ǘƘƛƴƎǎ ǘƘŀǘ ŀǊŜƴΩǘ ŀǘ ǉǳƛǘŜ ǎǳŎƘ ŀ ƭƻǿ ƭŜǾŜƭΣ ŀ ǎŜǊǾŜǊ ǇǊƻŎŜǎǎ ƳŀƴŀƎŜǎ ŀ ǊŜǉǳŜǎǘ ǉǳŜǳŜΦ !
very popular way of doing this is to use TCP/IP. Each server is assigned a port on which it listens for
requests for its service. When a client sends a message to this port, the TCP mechanism creates a two-
way communication channel (using a new server port) for subsequent communication in that session.
Messages on this 2-way channel will generally follow an application-defined protocol of request and
response, maybe including callbacks and exception handling.

All operating systems have limits on the number of ports that can be open at any time, so it is
important for the TCP channel to get closed as soon as possible. This will happen if either the client or
server process terminates, but obviously it is important not to wait until then.

Many application protocols are designed to be very short-term. A Web service lasts only as long as it
takes to respond to a single request from the client. An email service remains connected just for long
enough to send a message. In these cases, the messages between client and server are simple and
text-based. For email, there are headers such as To:, From: and Subject:, followed by the message
body. For web servers, the first line of the request contains a verb and a URL, and the last line is blank;
while the response begins with a status code, then headers, a blank line, and then the body of the
response. (PUT and POST requests also have a body following the blank line.)

Services almost always listen on well-known port numbers, although there is always the option that
servers and clients agree on the use of some other port. These port numbers are assigned by the
Internet Assigned Numbers Authority (www.iana.org), so you can look up the one you want. Even
Pyrrho has its own port number of 5433.

On a PC you can see what listeners are in operation by using netstat ςa ςb . If you see an IP address in
square brackets with :s in it this is an IPv6 address, e.g. [::].

http://www.iana.org/

The Pyrrho Book (May 2015)

пл

пΦо ¢ƘŜ ŀǇǇƭƛŎŀǝƻƴ ǇǊƻǘƻŎƻƭ

hƴŎŜ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ н-way channel is established, ordinary I/O operations for Steams can be used.
The size of the first packet received is used in the end-to-end TCP packet negotiation. For many TCP/IP
services (e.g. HTTP) there is only one message in each direction, so this is fine. But if there will be many
messages, it is important to remember that the packet size negotiation is done again if the packet size
changes. For best results always ensure that all packets used on a channel have the same size. This
simple trick can affect communication speeds by a factor of 1000. Pyrrho always uses a packet size of
2048 octets.

For client-server communications it is often important to use asynchronous I/O calls. This is extremely
ƛƳǇƻǊǘŀƴǘ ŦƻǊ ƛƴǘŜǊŀŎǘƛǾŜ ŀǇǇƭƛŎŀǘƛƻƴǎΥ ȅƻǳ ŘƻƴΩǘ ǿŀƴǘ ǘƘŜ ǳǎŜǊΩǎ ŘƛǎǇƭŀȅ ǘƻ ŦǊŜŜȊŜ ǿƘƛƭŜ ǘƘŜ ǇǊƻŎŜǎǎ
wits for a reply from a remote server. Many programming systems (such as Windows Forms) already
ensure that the interactive events are done by a separate thread, but this brings its own complications,
and the run-time system will insist on cross-thread method invocation (Invoke()) where required.

The messages on this two-way communication channel are called (application) protocol data units
(PDU). For example, if your sporting club was not using SQL, you might have messages for enrolling a
new member, for recording a match, for a score etc. The start of the message might have an identifier
to say which message it is (using a small integer 1,2,3 for the different actions) and a set of strings for
the different data involved. If you were using SQL, each request might just be a string consisting of an
{v[ǎǘŀǘŜƳŜƴǘ όŜΦƎΦ άƛƴǎŜǊǘ ƛƴǘƻ ƳŜƳōŜǊǎ ΦΦέύΦ ¢Ƙƛǎ ŀǎǎǳƳŜǎ ǘƘŀǘ ŀǳǘƘŜƴǘƛŎŀǘƛƻƴ ƻŦ ǘƘŜ ǳǎŜǊ ǿŀǎ
already done during the connection step.

пΦп ¢ƘŜ ŎƭƛŜƴǘ ƭƛōǊŀǊȅ

Since a service is designed to be used by a number of different applications, there is usually a client-
side library whose methods manage the low-level communication with the server. Since low-level
details will usually be platform-dependent, it is considered bad design for a client application to write
directly to the communications stream. Instead, programming conventions have grown up for
different sorts of service so that (for example) client libraries for database services all look very similar,
as we have seen in Labs 1 and 2 in this course.

In the early days of programming distributed systems, a monolithic application would be simply
broken into client and server by placing some of its components (functions etc) on the server side.
Application code on the client side would be unaffected, because proxy functions were provided on
ǘƘŜ ŎƭƛŜƴǘ ǎƛŘŜ ǿƛǘƘ ǘƘŜ ǎŀƳŜ ƴŀƳŜǎ ŀƴŘ ǇŀǊŀƳŜǘŜǊǎ ŀǎ ōŜŦƻǊŜΦ ¢ƘŜ ǇǊƻȄȅ ǿƻǳƭŘ άƳŀǊǎƘŀƭέ ƛǘǎ
parameters for transmission to the server. This data would be disassembled on the server and used
to cal the real server-side function, and so on. Nowadays we try to design in client-server design from
the outset.

пΦр {Ŝǎǎƛƻƴǎ

As we have seen, the lifetime of the connection is an important consideration: the length of time
connected to the server using PCT is called a TCP/IP session. For database services it often happens
that very large amounts of data need to be transmitted between the client and the server, involving
many steps and client-side decisions. As we will see, the whole notion of database transactions is very
important. Assuming that the processing envisaged by the application involves zero or more
transactions, we can imagine that a transaction involves one or more TCP/IP sessions. We will discuss
this further later in this course.

At this stage, though, we will note that if the server needs to preserve information about the whole
ǎŜǊƛŜǎ ƻŦ ǘǊŀƴǎŀŎǘƛƻƴǎ όάǎŜǎǎƛƻƴ ǎǘŀǘŜέύ ŦǊƻƳ ƻƴŜ ¢/tκLt ǎŜǎǎƛƻƴ ǘƻ ǘƘŜ ƴŜȄǘΣ ǘƘƛǎ ǿƛƭƭ ǊŜǉǳƛǊŜ
management on multi-server installations where subsequent sessions might be on another server.
Either steps will be taken to ensure that subsequent requests from the same client are dealt with by
ǘƘŜ ǎŀƳŜ ǎŜǊǾŜǊ όάǎŜǊǾŜǊ ŀŦŦƛƴƛǘȅέύΣ ƻǊ ǎŜǊǾŜǊǎ ǿƛƭƭ ƴŜŜŘ ǘo share session state somehow.

The Pyrrho Book (May 2015)

пм

Another issue is that the TCP/IP setup time referred to earlier can become a significant cost. Some
client server systems create pools of connections and threads to try to make this process as efficient
as possible.

For both of these reasons, there is an argument for holding a connection open for the duration of a
transaction, even though this might be quite a long time.

пΦс 5ŀǘŀōŀǎŜ ŎƻƴŎǳǊǊŜƴŎȅ

In the meantime, the database server needs to be able to deal with other clients. With this design, it
becomes inevitable that the database server will manage multiple clients concurrently (dealing with
requests in different threads). Even requests from different clients for the same database may be
handled at the same time.

How database servers manage this is crucial. In order to preserve consistency we cannot see a jumble
of half-done transactions when we look at a database. Transactions (as we will see) need to be atomic.
To achieve consistency and atomicity we could lock parts of the database in advance, delaying
conflicting transactions until we are done (pessimistic), or we could simply allow all transactions to
proceed in isolation, only identifying conflict when transactions commit (optimistic).

Either way, the database server programming will be complicated.

As mentioned above, on big installations there will be many servers. The scenario that a request might
be handled by any of them is quite common, but there is an option to place different databases on
different (clusters of) servers. Large databases might be partitioned so that data is spread over many
servers. We will consider later in the course the different ways that servers can cooperate on
managing a database.

Viewing this problem from the viewpoint of the application, we note that on the Internet, the
traditional άǇŜǎǎƛƳƛǎǘƛŎέ solution of transactions locking the resources they are considering updating
ƛǎ ǿƛŘŜƭȅ ŎƻƴǎƛŘŜǊŜŘ ǳƴǎǳƛǘŀōƭŜΣ ŀƴŘ Ƴƻǎǘ ǾŜƴŘƻǊǎ ƘŀǾŜ ǎŜǘǘƭŜŘ ŦƻǊ ŀ ŎƻƴŎŜǇǘ ƻŦ άŜǾŜƴǘǳŀƭ ŎƻƴǎƛǎǘŜƴŎȅέ
(e.g. see Elbushra and Lindström, 2014), relying on compensation methods for resolving conflicts (e.g
Lessner et al 2012). Most application frameworks designed for the Web use a combination of
optimistic concurrency (on the network) and pessimistic concurrency (in the DBMS). All such hybrid
solutions really place the responsibility for verifying consistency on the application, where it does not
really belong. We return to this problem in Chapter 5.

пΦт 5ŀǘŀōŀǎŜǎ ŀƴŘ ǘƘŜ ŬƭŜ ǎȅǎǘŜƳ

Changes to the database need to be made durable, so they need to get written to durable media, such
as hard disks. The simplest possible sort of database file organisation would have a single (text?) file
per database. These days computer memories are so large that many databases would fit in memory
ς we can almost imagine the whole thing simply being written to disk periodically. But in the interests
of speed, we also have indexes to locate information very quickly, and these typically occupy similar
amounts of memory to the data itself.

In the old days, computer memories were small, so that the data and indexes were kept on disk. Pages
being modified would be in memory, and clever page replacement algorithms would ensure that the
disk contents kept pace with changes to the data.

Pyrrho has a different approach: all the indexes are kept (only) in memory, and the disk file consists
exactly of the transaction log. This makes the committing of a transaction very simple, typically a single
disk write operation, appending the transaction data to the end of the database.

It is obviously good practice for the DBMS to have exclusive access to the database file while it is
operating.

The Pyrrho Book (May 2015)

пн

пΦу !ƭǘŜǊƴŀǝǾŜ ŀǊŎƘƛǘŜŎǘǳǊŜǎ

Needless to say, various alternatives to the above architectural description are possible. On a personal
computer, sharing of data is less of an issue, so for example MS Access is a database product that
supports no sharing at all. If such a database is on a shared folder, whole file-locking mechanisms
(exclusive access above) are the best that can be managed.

Another no-sharing possibility is where an application has an embedded database. This is a persistent
store in the application that is not accessible by any other application. If the database actually uses
database technology such as SQL then the application will include a database engine in its executable
code.

Lƴ ƻǘƘŜǊ ŎŀǎŜǎΣ ǘƘŜ ŘŀǘŀōŀǎŜ ǘŜŎƘƴƻƭƻƎȅ ƛǎ ƭŜǎǎ ƛƳǇƻǊǘŀƴǘ ǘƘŀƴ ǘƘŜ ǎƘŀǊƛƴƎΣ ŀƴŘ ǇŜƻǇƭŜ ǎƘŀǊŜ άbƻ-{v[έ
databases such a twitter feeds. Such arrangements involve rapid non-transacted publication of data,
and nobody minds too much if a tweet gets overwritten. Since the data is not structured, there are no
indexes to keep in synchronisation with data, and no database constraints.

¸Ŝǘ ŀƴƻǘƘŜǊ ǎƻǊǘ ƻŦ ŘŀǘŀōŀǎŜ ƛǎ ǇǊƻǾƛŘŜŘ ƛƴ άōƛƎ Řŀǘŀέ ǿŀǊŜƘousing, where huge read-only
aggregations from data sources have been made accessible. Typically these systems avoid trouble by
disallowing updates to the warehoused data.

Finally, at the ultra-fast end of the spectrum we have in-memory databases where writing to durable
media does not matter.

In chapter 6 we will spend some time looking at information security issues. In client-server systems
it must be assumed that authentication is dealt with at the time that connection to the server is
established. Secure protocols such as HTTPS can help with this. Many databases are designed for use
by people playing different roles: bank managers, bank tellers etc. These roles could be separated out
completely by the client applications, but in this course we will study how good database design can
help with maintaining a more secure system. Database objects can have permissions associated with
them for access by people in different roles; and users can be authorised to exercise roles at different
times.

The Pyrrho Book (May 2015)

по

/ƘŀǇǘŜǊ р [ƻŎƪƛƴƎ Ǿǎ hǇǝƳƛǎǝŎ ¢ǊŀƴǎŀŎǝƻƴǎ
In this chapter we return to the question of transaction control as a way of ensuring data consistency
in multi-user databases. Although all commercial relational RDMS products use only pessimistic
concurrency control, there is a long tradition of research that optimistic concurrency provides a better
solution (e.g. Menascé and Nakamishi 1980, Haritsa et al 1990, Kaspi and Venkataraman 2014). The
biggest conceptual hurdle in developing applications for Pyrrho is the use of optimistic transactions.
It is very important for programmers to accept this approach as a fact of life, explained in the following
paragraphs, and not try to imitate a locking model.

All good database architectures today support the ACID properties of transactions (atomicity,
consistency, isolation and durability). Database products that use pessimistic locking (such as SQL
Server or Oracle) acquire these locks on behalf of transactions by default, and it is not usually
necessary for an application to deal with these issues directly. In a pessimistic locking product,
transactions can be delayed (blocked) while waiting for the required locks to become available.

A transaction can fail because it conflicts with another transaction. For example, with pessimistic
locking, the server may detect that two (or more) transactions have become deadlocked, that is, all of
the transactions in the group is waiting for a lock that is held by another transaction in the group. In
these circumstances, the server will abort one of the transactions, and reclaim its locks, so that other
transactions in the group can proceed.

With pessimistic locking, if a transaction reaches its commit point, the commit will generally succeed.
If it does not complete, it retains locks on database resources until it is rolled back. With SQL Server,
for example, once a transaction T begins, it acquires locks on data that it accesses. If it updates any
data, it acquires an exclusive lock on the data. Until T commits or is rolled back, no other transaction
can access any data written by T or make any change to data read by T.

With optimistic locking, the first sign of failure may well be when the transaction tries to commit. A
transaction will fail if it tries to make a change that conflicts with a change made by another
transaction.

In both cases, it is important for database applications to be prepared to restart transactions. In the
case of pessimistic transactions this would normally follow deadlock detection or timeout. With
pessimistic locking an attempt could simply be made to re-acquire the same locks: this step could be
ǇŜǊŦƻǊƳŜŘ ŀǳǘƻƳŀǘƛŎŀƭƭȅ ōȅ ǘƘŜ ǎŜǊǾŜǊΦ IƻǿŜǾŜǊΣ ƛǘ ƛǎ ƴƻǘ ƎƻƻŘ ǇǊŀŎǘƛŎŜ ŦƻǊ ǘƘŜ ǘǊŀƴǎŀŎǘƛƻƴΩǎ ǎŜǉǳŜƴŎŜ
of SQL statements to be simply replayed, since generally the state of the database will have changed
(this is why the transaction failed), and the application should start again to see what to do in this new
situation..

In the classic transaction example of withdrawing money from a bank account, a transaction for
making a traƴǎŦŜǊ ƳƛƎƘǘ ƛƴŎƭǳŘŜ ŀƴ {v[ǎǘŀǘŜƳŜƴǘ ƻŦ ǘƘŜ ŦƻǊƳ άǳǇŘŀǘŜ ƳȅŀŎŎƻǳƴǘ ǎŜǘ
balance=balance-мллέ ƻǊ άǳǇŘŀǘŜ ƳȅŀŎŎƻǳƴǘ ǎŜǘ ōŀƭŀƴŎŜҐопрсέΦ ²ǊƛǘƛƴƎ {v[ǎǘŀǘŜƳŜƴǘǎ ƛƴ ǘƘŜ ŦƛǊǎǘ
form makes them apparently easier to restart, but the point being made here is that it should be the
ŎƭƛŜƴǘ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǊŜǎǇƻƴǎƛōƛƭƛǘȅ ǘƻ ŘŜŎƛŘŜ ƛŦ ǘƘŜ ǎǘŀǘŜƳŜƴǘǎ ǎƘƻǳƭŘ ǎƛƳǇƭȅ ōŜ ǊŜǇƭŀȅŜŘ ƻƴ ǊŜǎǘŀǊǘΦ ¢ƘŜ
server should not simply make assumptions about the business logic of the transaction. Pyrrho
transaction checking includes checking that data read by the transaction has not been changed by
another transaction.

рΦм ! ǎŎŜƴŀǊƛƻ ƻŦ ǘǊŀƴǎŀŎǝƻƴ ŎƻƴƅƛŎǘ

To simplify the discussion, let us consider operations on a table Products.

Products: (id int primary key, description char, quantity int check(quantity>=0),price int)

In this system, some transactions will involve a purchase (failing in the absence of sufficient stock)

The Pyrrho Book (May 2015)

пп

A(x): SELECT price FROM Products WHERE id=A.x; UPDATE Products SET quantity=quantity-1 WHERE
id=A.x

Some transactions will request several items (failing if any item is unavailable)

B(x1,x2..,xn): BEGIN TRANSACTION A(x1); A(x2);..;A(xn); COMMIT

Now for normal levels of activity, these transactions execute very rapidly, and concurrency is not likely
to be a problem. In order to have problems with transaction failures we need to assume huge
transaction volumes, a huge size to the Products table, or that the Products table is geographically
distributed over many servers, etc. So, assuming that we can imagine transaction conflict occurring at
all, we note that transactions of type B(x1,..xn) will conflict with any concurrent A(x) where x=xi some
i.

 Other transactions will involve adjustments to the stock levels or prices. For example, we might
implement a policy of discounting plentiful items whose description matches a given pattern (e.g.
Ψ҈.h[¢҈Ωύ

C(y): UPDATE Products SET price=price*0.9 WHERE quantity>40 AND description like C.y

This transaction will conflict with any A(x) such that description(x) is like y , even if quantity(x)Җ40. Not
all database experts consider that conflict arises here. With PCC we can imagine that all rows of
Products would be locked for the duration of C(y) transaction. With OCC, some implementations might
not report any conflict on the grounds that C(y) does not modify quantities. However, as transactions
A and B also compute a required payment for the items purchased, the cost of the purchase might be
debatable if transaction C was concurrently applying a discount. On these grounds we would say that
C(y) will conflict with any A(x) such that quantity(x)>100.

{ǳǇǇƻǎŜ tǊƻŘǳŎǘǎ Ŏƻƴǘŀƛƴǎ ŀƴ ƛǘŜƳ όпрсΣΩрлл оȄр .h[¢ΩΣмлмΣоΦллύΣ ŀƴŘ !όпрсύ ŦƻƭƭƻǿŜŘ ōȅ /όΨ҈.h[¢ΩύΣ
ǘƘŜ Ŏƻǎǘ ƻŦ ! ƛǎ оΦлл ŀƴŘ ǘƘŜ tǊƻŘǳŎǘǎ ǘŀōƭŜ ǊŜŀŘǎ όпрсΣΩрлл оȄр .h[¢ΩΣмллΣоΦллύ Φ LŦ / ƛǎ ŦƻƭƭƻǿŜŘ by A,
ǘƘŜ Ŏƻǎǘ ƻŦ ! ƛǎ нΦтл ŀƴŘ ǘƘŜ tǊƻŘǳŎǘǎ ǘŀōƭŜ Ŏƻƴǘŀƛƴǎ όпрсΣΩрлл оȄр .h[¢ΩΣмллΣнΦтлύ Φ ¢ƘŜ ǇǊƛƴŎƛǇƭŜ ƻŦ
serialisability of transactions should ensure that no other outcomes are possible. In the absence of
proper concurrency control, both A and C might proceed on the basis of a snapshot of the Products
table at the start of their transactions, so that A would cost 3.00 and the Products table would have
όпрсΣΩрлл оȄр .h[¢ΩΣмллΣнΦтлύΦ Lƴ ǘƘƛǎ ōǳǎƛƴŜǎǎ ǎŎŜƴŀǊƛƻ ǇŜǊƘŀǇǎ ǘƘƛǎ ǳƴŎŜǊǘŀƛƴǘȅ ƛǎ ǳƴƛƳǇƻǊǘŀƴǘΣ ōǳǘ
in scenarios such as control of dangerous industrial processes, such uncertainties could be a matter of
life and death.

To ensure serialisability, we must conclude that A(x) and C(y) will conflict if A(x) affects the value of a
Boolean expression used by C, i.e. if quantity(x)=101 and description(x) like y. In this scenario a conflict
will also be detected if C actually updates the price used by A.

As a result of these considerations, the conflict implementation rules require that changes made since
the start of a transaction are checked for conflict with anything read by the transaction. Suppose that
C starts before A starts, but A starts and commits before C attempts to commit. Then C will fail,
because one of the quantities read by C has changed. If C coƳƳƛǘǎ ŦƛǊǎǘΣ ǘƘŜƴ ! ǿƛƭƭ Ŧŀƛƭ ƛŦ ȄΩǎ ǇǊƛŎŜ Ƙŀǎ
changed.

рΦн ¢ǊŀƴǎŀŎǝƻƴǎ ŀƴŘ [ƻŎƪƛƴƎ tǊƻǘƻŎƻƭǎ
In chapter 2 ǿŜ ǎŀǿ ŀƴ ƛƴǘǊƻŘǳŎǘƛƻƴ ǘƻ ǘƘŜ ŘŜǘŀƛƭŜŘ ƻǇŜǊŀǘƛƻƴ ƻŦ tȅǊǊƘƻΩǎ ƻǇǘƛƳƛǎǘƛŎ ǘǊŀƴǎŀŎǘƛƻƴ
mechanism. The main commercial database systems use pessimistic (locking) protocols. The normal
argument in favour of locking is that once locks are acquired, a correctly formed transaction can be
guaranteed to complete, whereas an optimistic system might have to start over having done some
work. However, in pessimistic system the process of acquiring locks can be lengthy and may require
the application to release its locks and start again. Years ago there was a lot of debate in both
directions, with many research papers claiming that optimistic methods result in higher throughput

The Pyrrho Book (May 2015)

пр

(e.g. Kung and Robinson 1981). So in both cases, transaction failure can result from conflict: for
pessimistic control, it is a conflict of intention, while for optimistic control it is a conflict of action.

Optimistic Concurrency Control (OCC) is not widely used in commercial DBMS products. Although it
always produces serialisable transaction behaviour, there is no way of guaranteeing in advance that
any given transaction will be able to commit. With pessimistic concurrency control (PCC), a transaction
is allowed to delay starting until it has succeeded in locking the data it wishes to read or write, and
these locks are maintained by the DBMS until the end of the transaction that owns them.

PCC is subject to denial-of-service attacks, since an attacker can repeatedly request locks on a large
set of data items, thus delaying legitimate transactions. Such an attack might leave few traces, since
ǘƘŜ ŘŜƭŀȅ ǿƛƭƭ ƻŎŎǳǊ ŜǾŜƴ ƛŦ ǘƘŜ ŀǘǘŀŎƪŜǊΩǎ ǘǊŀƴǎŀŎǘƛƻƴ ƳŀƪŜǎ ƴƻ ŎƘŀƴƎŜǎ ŀƴŘ ǎƛƳǇƭȅ ǘƛƳŜǎ ƻǳǘΦ

In widely distributed information systems made possible by the Internet, the impossibility of
maintaining database locking while a user organises their payment methods has led many to abandon
the use of ACID databases altogether (Lessner et al 2012). Where locking processes have been
combined with such distributed transactions it has been found necessary to introduce the idea of
compensation processes, effectively to automate the cancelling of supposedly durable transaction
commits.

Recent work from Microsoft, Google, and IBM supports optimistic transaction management by using
versioning (e.g. Garus 2012, Guenther 2012, IBM 2011), and this represents a big change from always
using locking protocols. In fact, optimistic transaction management is the default in MicrosƻŦǘΩǎ 9ƴǘƛǘȅ
CǊŀƳŜǿƻǊƪΣ DƻƻƎƭŜΩǎ 5ŀǘŀǎǘƻǊŜΣ ŀƴŘ L.aǎ 9W. ƛƳǇƭŜƳŜƴǘŀǘƛƻƴǎΦ

At first sight the requirement at the Internet level for optimistic transactions seems fundamentally at
odds with the requirement in the large commercial database systems to use locking protocols.
Numerous papers (e.g. those cited above) provide complex workarounds but for many purposes the
difficulties are not as severe as might be expected.

The first reason is that internet applications deal directly with databases on behalf of their multiple
users: as far as the database is concerned there is only one client. Similarly, the databases at the heart
of messaging systems have only one client, namely the enterprise server, and different enterprise
servers (Exchange, BizTalk, WebSphere etc) use different databases.

The second is that concurrent access to the database is often limited by tuning arrangements. In many
DBMS there may be parallel transactions, but the steps in these transactions are serialised by the TCP
request socket mechanism: few DBMS use multi-ǘƘǊŜŀŘƛƴƎ ŀǘ ǘƘŜ ǎǘŜǇ ƭŜǾŜƭΦ !ǎ ǿŜ ƘŀǾŜ ǎŜŜƴ tȅǊǊƘƻΩǎ
multithreading is at the connection level, and assumes that transactions for that connection are
serialised by the client application so that any thread-specific data is disposed of at transaction
boundaries.

Finally the granularity of locking can be adjusted. For normal row-based CRUD operations Pyrrho
detects conflicts at the row level and detects conflicts at the level of database objects only when
schema changes are being made. This level of granularity is slightly harder to achieve in pessimistic
systems since a great deal of work may be required in advance to identify exactly which rows will be
updated.

рΦо {ƴŀǇǎƘƻǘ ƛǎƻƭŀǝƻƴ
Snapshot isolation is when transactions cannot see the activities of concurrent transactions, but
proceeds with a view of how the database stood at the time the transaction started. Many DBMSs
support snapshot isolation (SI) as an optional mode: Pyrrho enforces it.

In databases that provide so-ŎŀƭƭŜŘ άǎŜǊƛŀƭƛǎŀōƭŜ ǎƴŀǇǎƘƻǘ ƛǎƻƭŀǘƛƻƴέ ό{{Lύ ǘƘŜǊŜ ƛǎ ŀ ŎƘŜŎƪ ƳŀŘŜ ōŜŦƻǊŜ
a transaction commits that no updates since the snapshot conflict with any updates the transaction is

The Pyrrho Book (May 2015)

пс

about to commit. It used to be claimed that this results in serialisable transactions, but it does not.
Transactions are only serialisable if all of their activities (reads and writes) have effect as if there is no
concurrency, i.e. there is an ordering of the effective times of transactions such that the same results
are achieved.

The commit time of a transaction is when its changes are written to durable media (not the time of
the commit request): for example as in Pyrrho by flush-writes to the transaction log. To ensure this
serialisability is valid we need to ensure that all of the records we have accessed, some of which we
may be about to change, still have the values found in the snapshot taken at the start of the
transaction.

Thus a first requirement at commit time of a transaction T is to ensure that none of this data has been
modified by other commits since the start of T. The set of read records and proposed physical changes
is checked against physical changes that other transactions have committed since the start of T. The
first part (the read records) is handled by a list of read constraints maintained by the local transaction.
For changes, the proposed physical records about to be written to disk are checked against those that
have been committed to the database since the start of T. For example if we are updating a value we
need to be sure that the table and record are still there, and the column still exists and has the right
type. These checks guarantee consistency of the database.

There are three further checks that are needed to guarantee data integrity. The DBMS will already
have checked for entity and referential integrity against the values it has in the snapshot, but at
commit time checks are needed against any relevant changes committed by other transactions. These
are (a) for primary and unique keys to check that a duplicate key has not been added since the start
of T, (b) to check that a key referenced by an inserted record has not been deleted since the start of T
and (c) to check that a key we are deleting is not referenced by a record that has been inserted since
the start of T.

Needless to say, as soon as we start to check the effects of other transactions, isolation is over, so
ǎǳŎƘ ŎƘŜŎƪǎ Ŏŀƴ ƻƴƭȅ ōŜ ƳŀŘŜ ŘǳǊƛƴƎ ¢Ωǎ ŎƻƳƳƛǘΣ ŀƴŘ ŀƭƭ ǘƘŜ ǎǘŜǇǎ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ƭŀǎǘ ǘǿƻ ǇŀǊŀƎǊŀǇƘǎ
must be done before any other transaction can start to commit. Pyrrho goes to a lot of trouble to
reduce the amount of processing needed to carry out these checks, but inevitably the cost of
performing the checks is linearly dependent on the number C of changes by T and also on the number
D of physical changes by other transactions since the start of T. The cost R of read constraints in T is
a bit better than linear in the number of records read: R increases by 1 for each table all of whose
records are read, and for each specific record read. The total cost of guaranteeing serialisability is
O(CD+DlogR).

Lƴ ǎƻƳŜ ǿŀȅǎΣ ƎƛǾŜƴ ǘƘŜ ŎƻƳƳƛǘƳŜƴǘ ǘƻ ǘǊŀƴǎŀŎǘƛƻƴ ǎŀŦŜǘȅΣ tȅǊǊƘƻΩǎ ŘŜǎƛƎƴ ƛǎ ƴŜŀǊ-optimal, and even
works well for distributed databases and transactions. It is not excessive, as the benchmarks in Lecture
1 show, but people are not used to paying for this level of serialisability.

There are alternative approaches. If the transaction contains only updates, SSI does guarantee
serialisability. If the correctness of reads is not an issue, they should be taken out of the transaction,
e.g. handled in a parallel connection. If a transaction dos require correct reads, and SSI is the best
ŀǾŀƛƭŀōƭŜ ƛƴ ŀ 5.a{Σ ǘǊǳŜ ǎŜǊƛŀƭƛǎŀōƛƭƛǘȅ Ŏŀƴ ōŜ ƎŀƛƴŜŘ ōȅ ǳǇƎǊŀŘƛƴƎ ǊŜŀŘǎ ǘƻ ǳǇŘŀǘŜǎ ƻŦ ǘƘŜ ŦƻǊƳ άǎŜǘ
ȄҐȄέΦ LŦ ǘƘŜ 5.a{ ǎǳǇǇƻǊǘs row versioning, the application can check these at commit time. But it
seems wrong to leave transaction safety to the client.

рΦп ¢ǊŀƴǎŀŎǝƻƴ ƳŀǎǘŜǊǎ
The enforcement of full ACID requires that for each resource there should be a single transaction
master that enforces serialisability of transactions that access its data, and any process that needs to
know an up-to-date value in the resource, or commit a change to this value, needs to be able to
communicate with that transaction master.

The Pyrrho Book (May 2015)

пт

Many designers of large systems dislike the notion of a single server playing such an important role.
There are two objections (a) it acts as a bottleneck at times of heavy traffic, (b) it represents a single
point of failure.

If the network is partitioned so that the transaction master is unreachable, then no updates should
occur. If the transaction master is permanently out of action, then the remaining network can elect a
new one, but it is not reasonable for two disconnected parts of the network to continue separately.

tŀǊǘƛǘƛƻƴƛƴƎ ŀ ŘŀǘŀōŀǎŜ άƘƻǊƛȊƻƴǘŀƭƭȅέ όŦƻǊ ŜȄŀƳǇƭŜ ƻƴ ŀ ƎŜƻƎǊŀǇƘƛŎŀƭ ōŀǎƛǎύ Ŏŀƴ ǎǇǊŜŀŘ ǘƘŜ ƭƻŀŘ
between transaction masters. This can enable higher throughput, provided transactions that use data
from more than one partition are very rare, as even a small number of distributed transactions can
cause serious delays. Transaction profiling can help to identify useful choices of partitions (e.g. see
Curino et al 2011). We return to consider distributed databases in Chapter 8.

Despite all the theory, and despite some very well-publicised disasters, few business people accept
the need for a single transaction master for each database fragment, or the need to stop all
transactions if the network becomes partitioned.

рΦр !5hΦb9¢ ŀƴŘ ǘǊŀƴǎŀŎǝƻƴǎ

It is rather important to understand that ADO.NET 2.0 introduced two parallel mechanisms of
operation, with different concurrency mechanisms.

¶ ¢ƘŜ 5ŀǘŀ{Ŝǘ ŀƴŘ 5ŀǘŀ!ŘŀǇǘŜǊ ǘȅǇŜǎ ǳǎŜŘ ŀ ŘƛǎŎƻƴƴŜŎǘŜŘ Řŀǘŀ ƳƻŘŜƭ ōŀǎŜŘ ƻƴ ƻǇǝƳƛǎǝŎ
ŎƻƴŎǳǊǊŜƴŎȅ

¶ ¢ƘŜ 5ō/ƻƳƳŀƴŘ ŀƴŘ 5ŀǘŀwŜŀŘŜǊ ǘȅǇŜǎ ǳǎŜŘ ǇŜǎǎƛƳƛǎǝŎ ŎƻƴŎǳǊǊŜƴŎȅΦ

Because only one DataReader can be open for a given database connection this all works in a fairly
natural way: the duration of locking is the length of time that the data reader is open. We can make
local changes to a DataSet, and when we try to commit them to the database, ADO.NET makes a new
transaction for us, and checks that the affected records are still the same as when we read them.

рΦс ±ŜǊǎƛƻƴƛƴƎ
From April 2015, Pyrrho has a type of row versioning which this section compares with corresponding
ŦŜŀǘǳǊŜǎ ƛƴ L.aΩǎ {ƻƭiŘ5. ŀƴŘ aƛŎǊƻǎƻŦǘΩǎ {v[{ŜǊǾŜǊΦ

Pyrrho always supplies a pseudocolumn in all base tables called CHECK. The value is a string that
includes the transaction log name, defining position and current offset of the row version. When
retrieved it refers to the version valid at the start of the transaction, but it can be used at any time
subsequently (inside or outside the transaction) to see if the row has been updated by this or any
other transaction (this is the only violation of transaction isolation in Pyrrho).

There is a method in the PyrrhoConnect subclass of IDbConnection for verifying a check string:

bool Check(string ch) Check to see if a given CHECK pseudocolumn value is still current, i.e.

the row has not been modified by a later transaction.

Unlike other DBMS, the check cookie is just a note of a transaction log position and so is persistent.

Lƴ L.aΩǎ ǎƻƭƛŘ5.Σ the concurrency control mode can be set per table using the ALTER TABLE t SET
OPTIMISTIC/PESSEMISTIC statement, or for all tables using the General.Pessimistic setting in solid.ini.
With the default optimistic setting:

мΦ 9ŀŎƘ ǝƳŜ ǘƘŀǘ ǘƘŜ ǎŜǊǾŜǊ ǊŜŀŘǎ ŀ ǊŜŎƻǊŘ ǘƻ ǘǊȅ ǘƻ ǳǇŘŀǘŜ ƛǘΣ ǘƘŜ ǎŜǊǾŜǊ ƳŀƪŜǎ ŀ ŎƻǇȅ ƻŦ ǘƘŜ
ǾŜǊǎƛƻƴ ƴǳƳōŜǊ ƻŦ ǘƘŜ ǊŜŎƻǊŘ ŀƴŘ ǎǘƻǊŜǎ ǘƘŀǘ ŎƻǇȅ ŦƻǊ ƭŀǘŜǊ ǊŜŦŜǊŜƴŎŜΦ

нΦ ²ƘŜƴ ƛǘ ƛǎ ǝƳŜ ǘƻ ŎƻƳƳƛǘ ǘƘŜ ǘǊŀƴǎŀŎǝƻƴΣ ǘƘŜ ǎŜǊǾŜǊ ŎƻƳǇŀǊŜǎ ǘƘŜ ƻǊƛƎƛƴŀƭ ǾŜǊǎƛƻƴ ƴǳƳōŜǊ
ǘƘŀǘ ƛǘ ǊŜŀŘ ŀƎŀƛƴǎǘ ǘƘŜ ǾŜǊǎƛƻƴ ƴǳƳōŜǊ ƻŦ ǘƘŜ ŎǳǊǊŜƴǘƭȅ ŎƻƳƳƛǧŜŘ ŘŀǘŀΦ

The Pyrrho Book (May 2015)

пу

¶ LŦ ǘƘŜ ǾŜǊǎƛƻƴ ƴǳƳōŜǊǎ ŀǊŜ ǘƘŜ ǎŀƳŜΣ ǘƘŜƴ ƴƻ ƻƴŜ ŜƭǎŜ ŎƘŀƴƎŜŘ ǘƘŜ ǊŜŎƻǊŘ ŀƴŘ ǘƘŜ ǎȅǎǘŜƳ
Ŏŀƴ ǿǊƛǘŜ ǘƘŜ ǳǇŘŀǘŜŘ ǾŀƭǳŜΦ

¶ LŦ ǘƘŜ ƻǊƛƎƛƴŀƭƭȅ ǊŜŀŘ ǾŀƭǳŜ ŀƴŘ ǘƘŜ ŎǳǊǊŜƴǘ ǾŀƭǳŜ ƻƴ ǘƘŜ Řƛǎƪ ŀǊŜ ƴƻǘ ǘƘŜ ǎŀƳŜΣ ǘƘŜƴ
ǎƻƳŜƻƴŜ Ƙŀǎ ŎƘŀƴƎŜŘ ǘƘŜ Řŀǘŀ ǎƛƴŎŜ ƛǘ ǿŀǎ ǊŜŀŘΣ ŀƴŘ ǘƘŜ ŎǳǊǊŜƴǘ ƻǇŜǊŀǝƻƴ ƛǎ ǇǊƻōŀōƭȅ
ƻǳǘπƻŦπŘŀǘŜΦ ¢Ƙǳǎ ǘƘŜ ǎȅǎǘŜƳ ŘƛǎŎŀǊŘǎ ǘƘŜ ǾŜǊǎƛƻƴ ƻŦ ǘƘŜ ŘŀǘŀΣ ŀōƻǊǘǎ ǘƘŜ ǘǊŀƴǎŀŎǝƻƴΣ ŀƴŘ
ǊŜǘǳǊƴǎ ŀƴ ŜǊǊƻǊ ƳŜǎǎŀƎŜΦ

¶ ¢ƘŜ ǎǘŜǇ ƻŦ ŎƘŜŎƪƛƴƎ ǘƘŜ ǾŜǊǎƛƻƴ ƴǳƳōŜǊǎ ƛǎ ŎŀƭƭŜŘ ǾŀƭƛŘŀǝƻƴΦ ¢ƘŜ ǾŀƭƛŘŀǝƻƴ Ŏŀƴ ōŜ
ǇŜǊŦƻǊƳŜŘ ŀǘ ǘƘŜ ŎƻƳƳƛǘ ǝƳŜ όƴƻǊƳŀƭ ǾŀƭƛŘŀǝƻƴύ ƻǊ ŀǘ ǘƘŜ ǝƳŜ ƻŦ ǿǊƛǝƴƎ ŜŀŎƘ ǎǘŀǘŜƳŜƴǘ
όŜŀǊƭȅ ǾŀƭƛŘŀǝƻƴύΦ Lƴ ǎƻƭƛŘ5.Σ ŜŀǊƭȅ ǾŀƭƛŘŀǝƻƴ ƛǎ ǘƘŜ ŘŜŦŀǳƭǘ ƳŜǘƘƻŘ
όDŜƴŜǊŀƭΦ¢ǊŀƴǎŀŎǝƻƴ9ŀǊƭȅ±ŀƭƛŘŀǘŜҐȅŜǎύΦ

Each time a record is updated, the version number is updated as well.

Each user's transaction sees the database as it was at the time that the transaction started. This way
the data that each user sees is consistent throughout the transaction, and users are able to
concurrently access the database. Even though the optimistic concurrency control mechanism is
sometimes called optimistic locking, it is not a true locking schemeτthe system does not place any
locks when optimistic concurrency control is used. The term locking is used because optimistic
concurrency control serves the same purpose as pessimistic locking by preventing overlapping
updates. When you use optimistic locking, you do not find out that there is a conflict until just before
you write the updated data. In pessimistic locking, you find out there is a conflict as soon as you try to
read the data.

To use an analogy with banks, pessimistic locking is like having a guard at the bank door who checks
your account number when you try to enter; if someone else (a spouse, or a merchant to whom you
wrote a check) is already in the bank accessing your account, then you cannot enter until that other
person finishes her transaction and leaves. Optimistic locking, on the other hand, allows you to walk
into the bank at any time and try to do your business, but at the risk that as you are walking out the
door the bank guard will tell you that your transaction conflicted with someone else's and you will
have to go back and do the transaction again.

With pessimistic locking, the first user to request a lock, gets it. Once you have the lock, no other user
or connection can override your lock.

{v[{ŜǊǾŜǊΩǎ ƻǇǘƛƳƛǎǘƛŎ ŎƻƴŎǳǊǊŜƴŎȅ ǳǎŜǎ ǾŜǊǎƛƻƴƛƴƎΥ ǘƘŜȅ Ŏŀƭƭ ƛǘ άǎƴŀǇǎƘƻǘ ƛǎƻƭŀǘƛƻƴέΦ When a record
in a table or index is updated, the new record is stamped with the transaction sequence_number of
the transaction that is doing the update. The previous version of the record is stored in the version
store, and the new record contains a pointer to the old record in the version store. Old records in the
version store may contain pointers to even older versions. All the old versions of a particular record
are chained in a linked list, and SQL Server may need to follow several pointers in a list to reach the
right version. Version records need to be kept in the version store only as long as there are there are
operations that might require them.

рΦт ¢ǊŀƴǎŀŎǝƻƴ tǊƻŬƭƛƴƎ
In the current literature, transaction profiling is usually associated with detection of security breaches:
a transaction that does not fit any known business process deserves investigation. This paper presents
a new model for lightweight transaction profiling that also focuses on traffic optimisation, by
considering failed transactions also. Where transactions repeatedly fail because of lock-timeout or
transaction conflict, there are two options: redesign of the task, or scheduling it to take place during
maintenance periods. In experiments the mechanisms proposed here added less than 10% to DBMS
memory usage and had no appreciable effect on transaction timings. These mechanisms can bring
immediate benefits in database security and can assist in improvements to access control and role
management for a live system.

The Pyrrho Book (May 2015)

пф

The creation of transaction profiles is very important for proactive security monitoring, and for
database traffic management. A poorly designed database, or careless application design, can lead to
transactions that lock more data than they need to, and thus degrade performance of the whole
system. Where transactions repeatedly fail because of lock-timeout or transaction conflict, there are
two options: redesign of the task, or scheduling it to take place during maintenance periods.

Pyrrho includes a mechanism for diagnosing incidents where database transactions fail. Generally, a
transaction T has a read a set RT of data items and is committing changes to a set WT of data items,
and typically these sets overlap. With optimistic concurrency control, transactions are unaware of
concurrent transactions but a transaction commit will fail if another transaction has committed a

change to any data item in RT ÇWT. To analyse such failures, Pyrrho assists with aggregating failures
of this type, using a supplemental log that records the read and write details for each transaction along
with the success or failure of the transaction.

рΦу tǊƻŬƭƛƴƎ ƛƳǇƭŜƳŜƴǘŀǝƻƴ

If profiling is turned on for a database, Pyrrho maintains a transaction profile, which is persisted not

in the database itself, but in an XML file: this is because it is a record not of the entire database activity,

but just the periods for which profiling is enabled. Profiles can be deleted without harming the

database in any way.

There is a convenience utility called ProfileViewer which displays the profile in a readable tree-view

ŦƻǊƳŀǘΦ ¢ƘŜ ǇǊƻŦƛƭŜ Ŏŀƴ ŜƛǘƘŜǊ ōŜ άŦŜǘŎƘŜŘέ ŦǊƻƳ ǘƘŜ ǎŜǊǾŜǊ όŀǎǎǳƳƛƴƎ ǇǊƻŦƛƭƛƴƎ ƛǎ ŜƴŀōƭŜŘύΣ ƻǊ άƭƻŀŘŜŘέ

from the XML file (in which case ProfileViewer expects to find the xml file in its working folder).

Profiling has a negligible effect on performance and memory use. Profiling can be enabled for all

databases, or in the configuration of individual databases.

The purpose of gathering or storing profile information is to understand and monitor the causes of

transaction conflicts. Performance tuning and database design should seek to minimise failed

transactions during normal operation. It is inevitable that an unusual operation, such as changing the

schema or making an update affecting all rows of a table, will be hard to commit during heavy traffic,

because a conflicting transaction will probably occur in the meantime.

When profiling is turned off or on for a database called name profiling information is destructively

saved as or if available loaded from an XML document with name name.xml. Thus a database

administrator can carefully take a database offline by throttling, and then turning off profiling to

record a snapshot before shutting down a server, and in this way a full profile of normal operations

The Pyrrho Book (May 2015)

рл

can be maintained. This level of completeness for profile information will not be achieved if the

database server is simply killed.

If profiling is enabled, any failed transaction will report its profile. The system profile table will contain

the number of successful and failed transactions recorded for this profile: the number of successful

transactions will be based on the entire history of the database, while the number of failed

transactions recorded will be based on the available information from recorded periods of full profiling

(or since the time profiling was enabled for the server).

If profiling is turned on, a set of system tables (Profile$, Profile$ReadConstraint, Profile$Record,

Profile$RecordColumn, and Profile$Table) enable inspection of the real-time state of the profile

information, always excluding any information about transactions in progress. As with other system

tables these tables are not persisted but instrument the running server by exposing in-memory data

structures as if they were database tables. The profile viewer described in section 5.8 obtains profile

information from these tables or from the XML document, and also groups profiles with similar

pattern (for example where everything is the same apart from the number of affected rows).

рΦф tȅǊǊƘƻ5.a{Υ ǎŀŦŜ ƻǇǝƳƛǎǝŎ ǘǊŀƴǎŀŎǝƻƴǎ

The Distributed Database and Partitioned tutorial in Appendices 4 and 5 demonstrate how Pyrrho uses

three phase commit for distributed transactions. At this point in this book it seems a good point to

state once again that while Pyrrho uses optimistic concurrency control, it is totally transaction-safe. If

you are using explicit transactions you can use the system "Log$" table to view the proposed changes

for the current transaction. Each connection will have its own, and it is easy to see the they are isolated:

the only entries with known positions are the ones that predated the start of the transaction.

Accordingly the transaction commit protocol is in 4 or 5 phases controlled by locks on the transaction
log file (which in Pyrrho is the durable version of the database): 1. Verify the transaction does not

http://pyrrhodb.uws.ac.uk/DistributedDatabase.docx
http://3.bp.blogspot.com/-ss_kSREnWGc/VREs25OTMCI/AAAAAAAAAJ8/f2RYAqetJq0/s1600/TransLog1.png

The Pyrrho Book (May 2015)

рм

conflict with anything written since the start of the transaction. 1.5 Lock the database and repeat this
test. 2. Prepare the binary package to be written. 3. Write it to the disk file and unlock the database.
4. Now discard the local transaction and allow the client to see the database as it now is.
If multiple servers or databases are active then step 3 here requires three-phase commit during which
time the proposed changes are written to temporary files. If all is well, these temporary files do not
need to be read, and can be removed once all participants have acknowledged the commit request.

¢ǊŀƴǎŀŎǝƻƴ ŎƻƴƅƛŎǘǎ

This section examines the verification step that occurs during the first stage of Commit. For each
physical record P that has been added to the database file since the start of the local transaction T,
we

¶ check for conflict between P and T: conflict occurs if P alters or drops some data that T has
accessed, or otherwise makes T impossible to commit

¶ install P in T.

Let D be the state of the database at the start of T. At the conclusion of Commit1, T has installed all of
the P records, following its own physical records P': T=DP'P. But, if T now commits, its physical records
P' will follow all the P records in the database file. The database resulting from Commit3 will have all
P' installed after all P, ie. D'=DPP'. Part of the job of the verification step in Commit1 is to ensure that
these two states are equivalent: see section 4.2.2.

Note that both P and P' are sequences of physical records: P=p0p1ΧǇn etc.

The verification step performed by Pyrrho goes one stage beyond this requirement, by considering
what data T took into account in proposing its changes P'. We do this by considering instead the set
P" of operations that are read constraints C' or proposed physicals P' of T. We now require that DP"P
= DPP" .

The entries in C' are called ReadConstraints (this is a level 4 class), and there is one per base table
accessed during T (see section 3.8.1). The ReadConstraint records:

¶ The local transaction T

¶ The table concerned

¶ The constraint: CheckUpdate or its subclasses CheckSpecific, BlockUpdate

CheckUpdate records a list of columns that accessed in the transaction. CheckSpecific also records a
set of specific records that have been accessed in the transaction. If all records have been accessed
(explicitly or implicitly by means of aggregation or join), then BlockUpdate is used instead.

ReadConstraints are applied during query processing by code in the From class.

The ReadConstraint will conflict with an update or deletion to a record R in the table concerned if

¶ the constraint is a BlockUpdate or

¶ the constraint is a CheckSpecific and R is one of the specific rows listed.

This test is applied by LocalTransaction.check(Physical p) which is called from Commit1.

9ƴǝǘȅ LƴǘŜƎǊƛǘȅ

The main entity integrity mechanism is contained in LocalTransaction. However, a final check needs

to be made at transaction commit in case a concurrent transaction has done something that violates

Ŝƴǘƛǘȅ ƛƴǘŜƎǊƛǘȅΦ LŦ ǎƻΣ ǘƘŜ ŜǊǊƻǊ ŎƻƴŘƛǘƛƻƴ ǘƘŀǘ ƛǎ ǊŀƛǎŜŘ ƛǎ άǘǊŀƴǎŀŎǘƛƻƴ ŎƻƴŦƭƛŎǘέ ǊŀǘƘŜǊ ǘƘŀƴ ǘƘŜ ǳǎǳŀƭ

The Pyrrho Book (May 2015)

рн

entity integrity message, since there is no way that the transaction could have detected and avoided

the problem.

Concurrency control for entity integrity constraints are handled by IndexConstraint (level 2). It is done

at level 2 for speed during transaction commit, and consists of a linked list of the following data, which

is stored in (a non-persisted field of) the new Record

¶ The set of key columns

¶ The table (defpos)

¶ The new key as a linked list of values

¶ A pointer to the next IndexConstraint.

During LocalTransaction.AddRecord and LocalTransaction.UpdateRecord a new entry is made in this

list for the record for each uniqueness or primary key constraint in the record.

When the Record is checked against other records and discussed next, this list is tested for conflict.

wŜŦŜǊŜƴǝŀƭ LƴǘŜƎǊƛǘȅ

The main referential integrity mechanism is contained in LocalTransaction. However, a final check
needs to be made at transaction commit in case a concurrent transaction has done something that
ǾƛƻƭŀǘŜǎ ǊŜŦŜǊŜƴǘƛŀƭ ƛƴǘŜƎǊƛǘȅΦ LŦ ǎƻΣ ǘƘŜ ŜǊǊƻǊ ŎƻƴŘƛǘƛƻƴ ǘƘŀǘ ƛǎ ǊŀƛǎŜŘ ƛǎ άǘǊŀƴǎŀŎǘƛƻƴ ŎƻƴŦƭƛŎǘέ rather than
the usual referential integrity message, since there is no way that the transaction could have detected
and avoided the problem.

Concurrency control for referential constraints for Delete records are handled by
ReferenceDeletionConstraint (level 2). It is done at level 2 for speed during transaction commit, and
consists of a linked list of the following data, which is stored in (a non-persisted field of) the Delete
record

¶ The set of key columns in the referencing table

¶ The defining position of the referencing table (refingtable)

¶ The deleted key as a linked list of values

¶ A pointer to the next ReferenceDeletionConstraint.

Concurrency control for referential constraints for insertions records are handled by
ReferenceInsertionConstraint (level 2). It is done at level 2 for speed during transaction commit, and
consists of a linked list of the following data, which is stored in (a non-persisted field of) the Record
record

¶ The set of key columns in the referenced table

¶ The defining position of the referenced table (reftable)

¶ The new key as a linked list of values

¶ A pointer to the next ReferenceInsertionConstraint.

For distributed databases all the above checking information needs to be sent to the transaction
master for verification.

The Pyrrho Book (May 2015)

ро

/ƘŀǇǘŜǊ сΥ wƻƭŜ .ŀǎŜŘ {ŜŎǳǊƛǘȅ

In any organisation, the allocation of responsibilities to individuals varies over time, and so it makes
sense to assign permissions not to individual users, but to roles. Roles are associated with business
processes, not job descriptions: any one individual might be assigned a number of roles in different
business processes such as validate travel expenses, assign salesman to region, publish telephone
directory. It is a good idea to have a number of roles: if there are none than there is no traceability
and no security: anyone can do anything and nobody will ever know why. It is also a good idea that
every operation on a database declares the role being exercised, so that the action can be checked for
validity. The principles of transparency and accountability mean that people need to explain what they
are doing ς it is not enough simply to say I am doing this because I can.

Security analysis begins with an account of who is allowed to enter or modify data and on what basis,
and who is allowed to read that data. Permissions can be granted to applications as well as to users,
but in that case the application takes on the responsibility for allowing different individuals to carry
out different operations, and for best results it is these that should be recorded in the transaction
record. For a particular database and application, it will be clear at any stage what role is being
exercised. The same considerations apply to stored procedures and to methods of structured types.

From this discussion we see that database operations should be granted to roles, and roles should be
granted to users. In SQL there is also the possibility of allowing users to administer a role, and allowing
a role to grant privileges to other roles.

For an example, suppose we have a warehouse containing products, being ordered by customers. We
can imagine that the list of products is maintained by a Manager role, that a Clerk can add a new
customer or take a new order, that a Storeman can manually alter stock levels, that a Deliveryman can
record that a delivery has been done, etc. We expect none of this information is confidential, except
that customer address information is only visible to the Clerk and Deliveryman. Individuals might be
allowed to adopt more than one role, but it should always be clear what role they are currently in. So
ƛŦ WƻƘƴ ǘƘŜ /ƭŜǊƪ ƛǎ ǘŜƳǇƻǊŀǊƛƭȅ ŀƭƭƻǿŜŘ ǘƻ Řƻ ǎƻƳŜǘƘƛƴƎ ƛƴ ǘƘŜ aŀƴŀƎŜǊΩǎ ŀōǎŜƴŎŜΣ ǿŜ ǎƘƻǳƭŘ ōŜ ŀōƭŜ
to look back to see what he did in that role.

9ȄŀƳǇƭŜ

For example, suppose a small sporting club (such as squash or tennis) wishes to allow members to

record their matches for ranking purposes:

Members: (id int primary key, firstname char)

Played: (id int primary key, winner int references members, loser int

references members, agreed boolean)

For simplicity we give everyone select access to both these tables.

Grant select on members to public

Grant select on played to public

Although Pyrrho records which user makes changes, it will save time if users are not allowed to make

arbitrary changes to the Played table. Instead we will have procedure Claim(won,beat) and Agree(id),

so that the Agree procedure is effective only when executed by the loser. With some simple

assumptions on user names, the two procedures could be as simple as:

Create procedure cl aim(won int,beat int)

insert into played(winner,loser) values(claim.won,claim.beat)

The Pyrrho Book (May 2015)

рп

Create procedure agree(p int)

 update played set agreed=true

 where winner=agree.p and

loser in (select m.id from members m where current_user like

('%'||firstname))

We want all members of the club to be able to execute these procedures. We could simply grant

execute on these procedures to public. However, it is better practice to grant these permissions

instead to a role (say, membergames) and allow any member to use this role:

Create role membergames 'Matches between members for ranking purposes'

Grant execute on procedure claim(int,int) to role membergames

Grant execute on procedure agree(int) to role membergames

Grant membergames to public

This example could be extended by considering the actual use made of the Played table in calculating

the current rankings, etc.

сΦм !ǇǇƭƛŎŀǝƻƴ ƻǊ 5.a{ ōŀǎŜŘ ǎŜŎǳǊƛǘȅ

In many commercial environments, DBMS security is a neglected topic. This is partially excusable if
the only way to use a database is through a set of applications whose use is subject to strong
authentication and authorisation mechanisms, but it should be recognised that a good security
structure in the databases can lead to greatly enhanced forensic opportunities. These will be lost if
the tables in a database are all public, or (worse) if the tables all belong to the database administrator
and the database administrator identity is used by all applications.

In many commercial DBMS, it is very hard to discover who made a particular change to the database,
or when, or what value was there before the change occurred. Although transaction logs can be
maintained, they are often discarded after a time. It is better practice to retain the logs, or to adopt a
DBMS design ǎǳŎƘ ŀǎ tȅǊǊƘƻΩǎ ǿƘŜǊŜ ǘƘŜ ǘǊŀƴǎŀŎǘƛƻƴ ƭƻƎ ƛǎ ƛƴǎŜǇŀǊŀōƭŜ ŦǊƻƳ ǘƘŜ ŘŀǘŀōŀǎŜΦ

On the other hand, the user of DBMS-based security makes a database much less portable. It is no
longer a simple matter of copying the database tables to another machine or domain, since the
authorisation identifiers will be different. For example, if a student develops a database at home, there
is an extra step required to ensure that the database is usable in the workplace environment, namely
to grant all privileges on the base tŀōƭŜǎ ǘƻ ǘƘŜ ǎǘǳŘŜƴǘΩǎ ǳǎŜǊ ƛŘŜƴǘƛǘȅ ƛƴ ǘƘŜ ǿƻǊƪǇƭŀŎŜΥ

grant all privileges on players to "DOMAIN\user"

or to PUBLIC of course.

сΦн CƻǊŜƴǎƛŎ ƛƴǾŜǎǝƎŀǝƻƴ ƻŦ ŀ ŘŀǘŀōŀǎŜ

Pyrrho supports two kinds of investigation of a database.

First, full log tables are maintained. These are accessible to the current owner of the database, or to
an investigator specified in the server configuration file. The log files allow tracing back to discover the
full history of any object: when it was created, what changes to it were made, and when it was dropped.
In each case, full transaction details are recorded: user, role and timestamp. Since objects can be
renamed, logs use numeric identifiers to refer to objects in the database. Full details of the log tables
are given in chapter 8. Using these tables it is always possible to obtain details of when and by whom
entries were made in the database.

The Pyrrho Book (May 2015)

рр

Secondly, Pyrrho supports a sort of time travel, in which a Stop time can be specified in the connection
string (see chapter 6). The connection then allows the database to be seen exactly as it was at that
time, and provided the operating system can restore the right user identities and application versions,
these can be used to inspect the database, which is generally easier than working with the log files. In
complex cases, a detailed investigation of the database as it was at a former time may be necessary
to discover just how a particular user and role could have made a particular change to the database
(since the change might have been made indirectly, for example by a trigger or a stored procedure).

One extension to SQL2011 syntax which assists with forensic investigation is the pseudo-table ROWS(n)
ǿƘŜǊŜ ƴ ƛǎ ǘƘŜ άtƻǎέ ŀǘǘǊƛōǳǘŜ ƻŦ ǘƘŜ ǘŀōƭŜ ŎƻƴŎŜǊƴŜŘ ƛƴ ά{ȅǎϷ¢ŀōƭŜέ όǎŜŜ Appendix 8). For example,
suppose we want a complete history of all insert, update and delete operations on table BOOK. Then
lookup BOOK in Sys$Table:

select "Pos" from "Sys$Table" where "Name"='BOOK'

If this yields 274, then the required history is

select * from rows(274)

These can of course be combined:

select * from rows((select "Pos" from "Sys$Table" where "Name"='BOOK'))

The second set of parentheses is needed in SQL2011 here to force a scalar subquery.

The Log$ table gives a semi-readable account of all transactions:

The Pyrrho Book (May 2015)

рс

The system log refers to columns and tables by their uniquely identifying number rather than by name.
Note also that the Update record shows which field(s) have been modified.

aƻǎǘ ƻŦ ǘƘŜ {ȅǎǘŜƳ ŀƴŘ ƭƻƎ ǘŀōƭŜǎ ƘŀǾŜ ŀ ŎƻƭǳƳƴ ŎŀƭƭŜŘ άtƻǎέ ǿƘƛŎƘ gives the defining position of the
relevant entry.

There is a pseudo-column in every table called POSITION which allows the defining position of current
records in the database to be retrieved using ordinary queries, e.g. in the above example

select book.position from book where title='Dombey and Son'

would give 405. This value is in fact the defining position of the first record with the same primary key
ŀǎ Ψ5ƻƳōŜȅ ŀƴŘ {ƻƴΩΣ ǊŀǘƘŜǊ ǘƘŀƴ ǘƘŜ ǇƭŀŎŜ ǿƘŜǊŜ ǘƘŜ ŎǳǊǊŜƴǘ ǘƛǘƭŜ ǿŀǎ ǎŜǘΣ ŀƴŘ ǎƻ ƛǘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ
find other relevant log entries for this record.

An authorisation identifier is like a user. Users are defined in SQL by granting them privileges. It is
assumed that there is some implementation defined way of associating a particular session with an
authorisation identifier. For example in SQL server, users are defined within SQL server or by means
of Windows integrated authentication. In Pyrrho the user identity is taken from Windows in form
άŘƻƳŀƛƴ\ǳǎŜǊέ όƻǊ ƛƴ [ƛƴǳȄ ŦǊƻƳ ǘƘŜ ŎƻƴƴŜŎǘƛƻƴ ǎǘǊƛƴƎύΣ ŀƴŘ Ŏŀƴnot be changed in a session..

SQL recognises a predefined authorization identifier _SYSTEM . Apart from _SYSTEM, any
authorisation identifier can be a granted privileges or roles.

The Pyrrho Book (May 2015)

рт

сΦо tǊƛǾƛƭŜƎŜǎ

The SQL standard says that a privilege authorises a given category of action to be performed by a
specified authorisation identifier on a specified object, such as a table, a column, a domain, a user-
defined type, or a routine. The actions that can be specified are insert, update, delete, select,
references, usage, under, trigger and execute. Insert, update, select and references can be for whole
tables or views, or can be limited to a specified set of columns. Usage privileges apply to domains or
user-defined types. Under privileges apply to structured types, and execute privileges apply to
routines.

The security model in the SQL standard is based on the GRANT and REVOKE statement. There are two
versions of each, for granting or revoking privileges to grantees and for granting or revoking roles to
grantees.

A grantable privilege is a privilege that may be granted by a grant privilege statement: it can specify
WITH GRANT OPTION in which case the grantee can grant it to others.

Every database object has an owner. This is initially set to the creator of the object, and _SYSTEM is
considered to have granted the owner all privileges when the object is created. On creation a database
has a default role with the same name as the database, and the owner of the database can use this
role to create the starting set of objects for the database.

The normal way for ownership of a Pyrrho database to be changed is for the database owner to invoke
the Pyrrho-specific GRANT OWNER statement. This is implemented as part of the normal database
service, and it is good practice to ensure that owners of database objects are user identities that are
still available in the operating system.

сΦп wƻƭŜǎ

A role can be created by the CREATE ROLE statement: initially the owner has administrative rights on
the role (granted by _SYSTEM). The grant role statement is used to allow this role to authorisation
idnetifiers, and if WITH ADMIN OPTION the grantee may grant it to others.

Each role is an authorisation identifier. SQL recognises a special role called PUBLIC which is associated
with any user and is the owner of standard domains.

In the SQL standard an authorisation identifier is permitted any action granted to it directly or through
a role. An authorisation identifier is enabled if it is the current user identifier, the current role name,
or the name of a role that is applicable for the current role. A privilege is current if it is applicable for
an enabled authorisation identifier.

In Pyrrho DBMS only one role is current at any point in a session. A user (authorisation identifier) must
choose a single role as the session role, and can modify this within the session using the SET ROLE
statement to another role they have been granted. Thus in Pyrrho, the only enabled authorisation
identifiers are the current user name and the current role.

сΦт ¢ƘŜ ǊƻƭŜ ǎǘŀŎƪ

During query execution, any invoked operation is checked to see that the current role has been
authorised to carry out the operation: at the start of the analysis the current role is set to the session
role. When the operation involves transferring control to a routine, and the current role is permitted
ǘƻ ŜȄŜŎǳǘŜ ǘƘŜ ǊƻǳǘƛƴŜΣ ǘƘŜ ŎǳǊǊŜƴǘ ǊƻƭŜ ōŜŎƻƳŜǎ ǘƘŜ ǊƻƭŜ ƻŦ ǘƘŜ ǊƻǳǘƛƴŜ όǘƘŜ άŘŜŦƛƴŜǊΩǎ ǊƻƭŜέύΣ ŀƴŘ ƛǎ
restored on exit from the routine.

When the transaction is committed, all of the modifications wƛƭƭ ōŜ ǊŜŎƻǊŘŜŘ ŀƎŀƛƴǎǘ ǘƘŜ ƻǊƛƎƛƴŀƭ ǳǎŜǊΩǎ
id and the session role. When reviewing such a record, it is important to remember that the changes
may have been made by a routine operating with different permissions.

The Pyrrho Book (May 2015)

ру

In Pyrrho, these permissions affect the metadata that can be viewed in a session, e.g. default values,
view definitions and routine definitions. If these are examined by the current user (using the system
tables) the SQL text may contain identifiers that have a different name or are not available to the
current user and role. Pyrrho displays the identifiers that are appropriate to the current user and role
or <hidden> if this data is not viewable from the current user and role.

сΦу wŜǾƻƪƛƴƎ ǇǊƛǾƛƭŜƎŜǎ

In the SQL standard it is often a complex matter to discover by what route a particular user is entitled
to take a particular action. There are many parts of the SQL standard where a schema change results
in a cascade of grants of permissions. Unfortunately, it then becomes very unclear what effect
revoking a privilege from a user or role will have, as a simple statement of the form

ǊŜǾƻƪŜ ŀƭƭ ǇǊƛǾƛƭŜƎŜǎ ƻƴ ¢ ŦǊƻƳ ά{ȅǎǘŜƳ\CǊŜŘέ
may allow Fred to retain privileges that he has acquired through some complex chain of grants.

Some DBMS regard this position as unsatisfactory, and in Pyrrho the semantics of grant and revoke
operate somewhat differently from the standard. The effect is that a revoke statement of the above
form will actually leave Fred with no privileges on the specified object (and any consequential
privileges are also removed, in a cascade). The derogation from the SQL standard in this respect is
extensively documented in the Pyrrho manual.

Apart from the owner privilege (which can be held by just one user), granting privileges directly to
users is deprecated. It is recommended to grant roles to users instead. Similarly, attempting to create
a hierarchy of roles is also deprecated, and in Pyrrho the grant of role A to role B has the effect only
of granting role A to all users authorised to use role B at the time of the grant: it does not create a
permanent relationship between the roles; revoking a role from a role does nothing, and all roles are
in the root namespace. This behaviour appears to be a departure from SQL2011.

Similarly, a grant of privileges does not create any permanent relationship between roles. For example,
granting Select on a Table implies granting select on all of the current columns. The grant can be
repeated later if new columns are added, or the new columns can be granted. Similarly in Pyrrho,
access to a column can be revoked even though the role was previously granted access to the whole
table.

Granting a role to a user is different: it means that the user is entitled to exercise the role, and any
privileges that the role has at the time of use.

сΦф ±ŜǊƛŦȅƛƴƎ ǇǊƛǾƛƭŜƎŜǎ

The DBMS should provide one or more system tables to verify the current permissions on an object.
Lƴ tȅǊǊƘƻΣ ǘƘƛǎ ƛǎ ŘƻƴŜ ōȅ ǘƘŜ άwƻƭŜϷtǊƛǾƛƭŜƎŜέ ǘŀōƭŜΦ IŜǊŜ ƛǎ ŀƴ ŜȄŀƳǇƭŜΥ

The Pyrrho Book (May 2015)

рф

As can be seen in the illustration, the fields in this system table are ObjectType, Name, Grantee,
Privilege and Owner. Note the different privileges associated with database objects (e.g. tables and
columns).

The Pyrrho Book (May 2015)

сл

/ƘŀǇǘŜǊ тΥ wƻƭŜπōŀǎŜŘ ƳƻŘŜƭƭƛƴƎ ŀƴŘ ƭŜƎŀŎȅ Řŀǘŀ

In the last chapter we examined roles and security. The roles assigned to a user, and the permissions
assigned to the roles, control what a user is able to do. For the reasons outlined in the last chapter,
Pyrrho requires the user to exercise one role at a time. In this chapter we explore a major advantage
of this approach, in that schema changes made by a user in Pyrrho are local to the role, so that each
role may have a different data model. We will see that this allows data analytics to operate
conveniently, and in real time, on the physical database.

On Windows systems, the user identity is obtained from Windows, and the default role has the same
name as the database. The user can specify another role in the connection string, or specified by the
SET ROLE statement, provided this role has been assigned to them. Pyrrho allows database objects to
be renamed or altered by holders of the appropriate permissions: but such renaming and alteration
applies to the current role, so that a database object can have different names in different roles.

By default all roles in a Pyrrho database have a default data model based on the base tables, their
columns, and using foreign keys as navigable properties. Composite keys use the list notation for
values e.g. (3,4) and the name is the reserved word key, which can be suffixed by the property name
of the key component. The default data model can be modified on a per-role basis to provide more
user-friendly entity and column names, and user-friendly descriptions of these entities and properties.
Tables and columns can be flagged as entities and attributes as desired.

For example, roles could be defined for users in different countries, using entity names, property
names and descriptions appropriate to the language of the country, giving access to localised columns
or views. The localisation of columns is facilitated by the Pyrrho-specific UPDATE clause for generated
columns which can perform lookups or casts behind the scenes. These defined views or generated
columns could even have specific data types targeting specific roles, since they impose no overhead
unless they are explicitly used.

Roles that are granted usage of an object will not see any subsequent name changes applied in the
parent role, but the role administrator can define new names. Stored procedures, view definitions,
ƎŜƴŜǊŀǘƛƻƴ ǊǳƭŜǎ ŜǘŎ ǳǎŜ ǘƘŜ ŘŜŦƛƴŜǊΩǎ ǇŜǊƳƛǎǎƛƻƴǎ ŦƻǊ ŜȄŜŎǳǘƛƻƴΦ LŦ ǘƘŜ ŎƻŘŜ ƛǎ ŜȄŀƳƛƴŜŘ ƛƴ ǘƘŜ
ŘƛŦŦŜǊŜƴǘ ǊƻƭŜǎ ǘƘŀǘ ǳǎŜ ǘƘŜƳ ƻōƧŜŎǘǎ ǿƛƭƭ ōŜ ǊŜŦŜǊǊŜŘ ǘƻ ǳǎƛƴƎ ǘƘŜ ǾƛŜǿƛƴƎ ǊƻƭŜΩǎ ƴŀƳŜǎΦ LŦ ǎǳŎƘ
embedded code refers to objecǘǎ ƛƴŀŎŎŜǎǎƛōƭŜ ǘƻ ǘƘŜ ǾƛŜǿŜǊΣ ǘƘŜ ŎƻŘŜ ǿƛƭƭ ōŜ ǊŜǇƻǊǘŜŘ ŀǎ άόŘŜŦƛƴŜǊΩǎ
ŎƻŘŜύέΦ

Apart from object names, only the owner of an object can modify objects (ALTER). This includes
changes to object constraints and triggers, and inevitably such modifications can disrupt the use of
the object by other roles, procedures etc. References in code in other roles can introduce restrictions
on dropping of objects, but as usual, cascades override restrictions, and in Pyrrho, revoking privileges
always causes a cascade. Granting select on a table must include at least one notnull column. Granting
insert privileges for a role must include any notnull columns that do not have default values, and
cannot include generated columns.

!ƴ ŜȄŀƳǇƭŜ

We walk through a simple database example, about a library database. Either start up the PyrrhoSQL
client as shown,

The Pyrrho Book (May 2015)

см

If you are using the PyrrhoSQL client shown, give the Database name as Library and click Connect. If
you are using an ordinary command prompt give the command

 pyrrhocmd Library

We begin by controlling access to the database, and then start to build a simple database of books
and authors.

ǊŜǾƻƪŜ ά[ƛōǊŀǊȅέ ŦǊƻƳ ǇǳōƭƛŎ

create table author(id int primary key,name char not null)

create table book(id int primary key, title char not null, aid int references author)

insert into author values(1,'Dickens'),(2,'Conrad')

insert into book values(10,'Lord Jim',2),(11,'Nicholas Nickleby',1)

table book

http://4.bp.blogspot.com/-4mzaEYnuRLg/TllDbo5-T_I/AAAAAAAAACc/ZWFdrY3ZVgs/s1600/pic1.png
http://1.bp.blogspot.com/-YCaHGvUHVM4/TllDsqXrKSI/AAAAAAAAACk/zOk6hOdsnbM/s1600/pic2.png

The Pyrrho Book (May 2015)

сн

This looks okay to a database specialist but the Librarian is not impresseŘΦ IŜ ǿŀƴǘǎ ǘƘŜ ŀǳǘƘƻǊΩǎ ƴŀƳŜ
in the book table: after feebly trying to explain about joins, I provide a special generated column in
this table using the standard SQL2008 syntax:

alter table book add aname char generated always as (select name from author a where a.id=aid)

This pleases him a bit but he wants more reader-friendly names and to hide these numeric columns.
So I add a new role for the Librarian, and allow Fred the admin option so he can define his preferred
column headings:

create role librarian

grant all privileges on author to librarian

grant all privileges on book to librarian

grant librarian to "COMP10059\Fred" with admin option

(A generation rule in SQL2011 is not allowed to contain a query expression. Otherwise there are no
Pyrrho extensions here.)

Fred can now log in to the system with his Librarian role. With the PyrrhoSQL client shown below, we
make sure Fred login with the LIBRARIAN role selected from the drop-down. If he uses the command
line, then after starting with pyrrhocmd Library, he needs

http://2.bp.blogspot.com/-jAFCxthVkpg/TllD4T55KKI/AAAAAAAAACs/MLSvN2fXHtE/s1600/pic3.png
http://3.bp.blogspot.com/-T8rFA4GKC4Y/TllECvZNPZI/AAAAAAAAAC0/52MMQVct3HI/s1600/pic4.png

The Pyrrho Book (May 2015)

со

set role librarian

ƻǊ ƘŜ ǿƻƴΩǘ ǎŜŜ ƳǳŎƘΦ He decides to rename some columns (this is a Pyrrho extension), define a new
column called Availability, and to create a role for his readers with a simpler table structure:

alter table book alter aid to "AuthorId"

alter table book alter aname to "Author"

alter table book alter title to "Title"

alter table book add "Availability" boolean default true

select "Title","Author","Availability" from book

create role reader

grant select("Title","Author","Availability" on book to reader

¢ƘŜ ƻƴƭȅ ŎƻƭǳƳƴǎ ǘƘŜ wŜŀŘŜǊ Ŏŀƴ ǎŜŜ ŀǊŜ ǘƘŜ ƻƴŜǎ ƎǊŀƴǘŜŘΣ ǎƻ wŜŀŘŜǊ Ŏŀƴ ǎŀȅ ǎƛƳǇƭȅ άǘŀōƭŜ ōƻƻƪέ ǘƻ
see these:

http://3.bp.blogspot.com/-O5SLxVhK0V4/TllEOjZ5sFI/AAAAAAAAAC8/PXg-Z5D80JY/s1600/pic5.png
http://4.bp.blogspot.com/-vsy8r7n35uM/TllEWAk4FKI/AAAAAAAAADE/FkRNJKjSTYk/s1600/pic6.png

The Pyrrho Book (May 2015)

сп

Note that the Author data comes from a table that is otherwise inaccessible to the Reader, because
the generatioƴ ǊǳƭŜ ǳǎŜǎ άŘŜŦƛƴŜǊΩǎ ǊƛƎƘǘǎέΦ

bƻǿ ǘƘƛǎ ƛǎ Ƙƻǿ ǘƘƛƴƎǎ ǎǘŀƴŘΦ ¢ƘŜ ŘŀǘŀōŀǎŜ ƻōƧŜŎǘǎ ŀǎ ǾƛŜǿŜŘ ŦǊƻƳ ǘƘŜ ŘŜŦŀǳƭǘ ά[ƛōǊŀǊȅέ ǊƻƭŜ ƘŀǾŜ ƴƻǘ
changed:

From the Librarian role we have:

http://2.bp.blogspot.com/-UH0bnMhFhcQ/TllEhmVgE2I/AAAAAAAAADM/fcRwNEUvAVE/s1600/pic7.png
http://4.bp.blogspot.com/-pOLfzpJbl1k/TllEx6yd2DI/AAAAAAAAADU/CTwng6ksyIM/s1600/pic8.png

The Pyrrho Book (May 2015)

ср

and as we have seen the Reader does not see the numeric fields.

тΦм Iƻǿ ǘƘŜ ƳŜŎƘŀƴƛǎƳ ǿƻǊƪǎ

The database creator has set up the following objects in the Library database: tables
!¦¢IhwόL5Σb!a9ύ ŀƴŘ .hhYόL5Σ¢L¢[9Σ!L5Σ!b!a9ύΦ Lƴ ǘƘŜ άwƻƭŜϷhōƧŜŎǘέ ǎȅǎǘŜƳ ǘŀōƭŜ ǿŜ Ŏŀƴ ǎŜŜ
these objects as owned by the default database role, and the PUBLIC standard types that have been
used: INTEGER and CHAR as required for these tables, and the BOOLEAN standard type that the
librarian used for his new Availability column.

http://4.bp.blogspot.com/-s0JWvZZsdmU/TllFBz1FxAI/AAAAAAAAADc/AS2gCm3M0iI/s1600/pic9.png
http://4.bp.blogspot.com/-zRJR1A-AkNc/Tlpe9VAKmMI/AAAAAAAAADk/ozBc-uO9fmI/s1600/pic10.png

The Pyrrho Book (May 2015)

сс

In this table we can also see that database objects can have other role-based metadata such as an
output flag (this can be Entity or Attribute as we will see later), a human-readable Description, and an
Iri for Web metadata.

In the corresponding tables for the other roles, we see different metadata for different sets of objects.
The LIBRARIAN role renamed three of these objects, and defined the Availability column, and the
READER role contains just a few entries. As at the end of the last blog posting, the database owner
cannot use this role: it was created by the LIBRARIAN and had not yet been made public. Fred can get
us the entries, and also make the role PUBLIC so anyone can use it.

LƴǎǘŜŀŘ ƻŦ ƭƻƻƪƛƴƎ ŀǘ ǘƘŜ wƻƭŜϷhōƧŜŎǘ ǘŀōƭŜ ŦƻǊ ŜŀŎƘ ǊƻƭŜΣ ƭŜǘΩǎ ƛƴǎǘŜŀŘ ƭƻƻƪ ŀǘ ǘƘŜ wƻƭŜϷ/ƻƭǳƳƴ ǘŀōƭŜΥ
ǘƘŜ ŦƛǊǎǘ ƛǎ ŦƻǊ ά[ƛōǊŀǊȅέΣ ǘƘŜ ǎŜŎƻƴŘ ŦƻǊ ά[L.w!wL!bέΣ ǘƘŜ ǘƘƛǊŘ ŦƻǊ άw9!59wέΥ

http://4.bp.blogspot.com/-p-KDApQq07o/TlpfazPQIBI/AAAAAAAAADs/6DDj8FmlNPI/s1600/pic11.png

